

CONGENITAL CARDIOLOGY TODAY

Timely News & Information for Congenital/Structural Cardiologists & Cardiothoracic Surgeons Worldwide

North American Edition Vol. 21 - Issue 5 May 2023

Table of Contents

1 Pulmonary Atresia With Intact Ventricular Septum - Part II P. Syamasundar Rao, MD & Nikhila Sri Rao, BS

17 Work-Life Balance: The Expectations and Perspectives as a Female Interventional Cardiologist Jenny E. Zablah, MD; Howaida El-Said, MD, PhD; Holly D. Bauser-Heaton, MD, PhD; Priti M. Patel, MD, FSCAI; Natalie Soszyn, MBBS

23 Medical News

- Illinois Tech professors' paper challenging classical view of muscle contraction could lead to new cardiac treatments
- The Berlin Heart Active Driver Trial Update from ACTION and Berlin Heart, Inc.

25 Meeting Calendar

Career Opportunities Throughout

Pulmonary Atresia With Intact Ventricular Septum - Part II

P. Syamasundar Rao, MD & Nikhila Sri Rao, BS

Introduction

In Part I, the pathologic anatomy, pathophysiology, and clinical features of pulmonary atresia (PA) with intact ventricular septum (IVS) were reviewed along with findings in chest x-ray, electrocardiogram, echocardiogram, and cardiac catheterization with selective cineangiography.¹ In Part II, therapy of PA with IVS will be reviewed.

Therapy

In the mid-1970s, we recommended a comprehensive program to treat patients with PA with IVS² which was reiterated in subsequent publications.³⁻⁶ The objective of the treatment plan is to accomplish a four-chamber, biventricular heart, with fully separate pulmonary and systemic circuits. The principles of such a comprehensive approach are: 1). To alleviate hypoxemia by urgent procedures to augment pulmonary blood flow when the baby presents first, usually during the neonatal period, 2). To encourage the growth of the right ventricle (RV) in an attempt to ultimately support pulmonary circulation, 3). To enable satisfactory egress of blood flow from the right atrium (RA), and 4). To finally separate right and left heart circuits. The treatment will be described on the basis of these principles.

1. Management of the Neonate at Initial Presentation

General Management

Management of the newborn with PA with IVS is analogous to that of any infant with cyanotic CHD.^{7.9} Infusion of intravenous prostaglandin E_1 (PGE₁) to keep the ductus open^{10,11} and perfuse the pulmonary circulation should be instituted similar to all babies with ductal dependent pulmonary blood flow while the diagnostic studies completed in order to confirm the diagnosis.

Restore Pulmonary Blood Flow

Since the pulmonary value is attretic, there is no forward flow from the RV into the lungs and, consequently, PGE_1 should be stated as soon as a diagnosis of PA with IVS is suspected/made. We

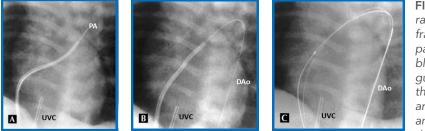


FIGURE 1 Cineradiographic frames illustrating passage of the blunt end of a guidewire into the pulmonary artery (PA) (A) and then into the descending

aorta (DAo) following reversal (B) of the coronary guidewire. A second guidewire was similarly advanced into the DAo (C) when a balloon angioplasty catheter could not initially be advanced across the atretic pulmonary valve membrane. UVC, umbilical venous catheter. Modified from Reference 5.

North American Edition

Vol. 21 - Issue 5

TABLE OF CONTENTS

- 1 Pulmonary Atresia With Intact Ventricular Septum Part II P. Syamasundar Rao, MD & Nikhila Sri Rao, BS
- **17 Work-Life Balance: The Expectations and Perspectives as a Female Interventional Cardiologist** Jenny E. Zablah, MD; Howaida El-Said, MD, PhD; Holly D. Bauser-Heaton, MD, PhD; Priti M. Patel, MD, FSCAI; Natalie Soszyn, MBBS

23 Medical News

- Illinois Tech professors' paper challenging classical view of muscle contraction could lead to new cardiac treatments
- The Berlin Heart Active Driver Trial Update from ACTION and Berlin Heart, Inc.

25 Meeting Calendar

Career Opportunities Throughout

Register Now! Join the PICS Society at the

World Congress of Pediatric Cardiology and Cardiac Surgery for

"PICS LIVE"

at the Marriott Marquis convention center, Monday, August 28th – Thursday, August 31st, 2023

PICS LIVE will be concurrent with the **World Congress of Pediatric Cardiology & Cardiac Surgery (WCPCCS).** Traditionally held every four years, the World Congress is a meeting of unparalleled depth, scope and size in pediatric cardiology/cardiac surgery. This year "PICS LIVE" will focus each morning with the live cases that PICS is renowned for, while enabling PICS LIVE attendees full access to the incredible programming of the entire World Congress.

Registration is Now Open for the World Congress of Pediatric Cardiology and Cardiac Surgery as well as the registration for "PICS LIVE" (you must register for PICS LIVE to be able to attend the live case sessions, in addition to the main World Congress program).

For Registration go to: https://www.wcpccs2023.org/Wnm7W7 **For Abstract Submission go to:** https://www.wcpccs2023.org/bRR78E

PLEASE VISIT THE WORLD CONGRESS WEBSITE or the most up to date program information: www.wcpccs2023.org

Z-5[™] Catheter vs. Z-6[™] Catheter UNDERSTANDING THE DIFFERENCES

Z-5™

- Over 25 years of proven safety and clinical experience
- 9.5 mm balloon catheter is primarily for infants less than 2 kg
- 9.5 mm balloon catheter available in 4F shaft size and compatible with 5F introducer
- 13.5 mm balloon catheter available in 5F shaft size and compatible with 6F introducer

- Short distal tip for easier insertion through the septum and improved rewrapping for easier removal into the introducer
- Both 9.5 mm and 13.5 mm balloon catheters available in 5F shaft size and compatible with 6F introducer

Same trusted materials. Created based on input from interventional pediatric cardiologists.

www.numedforchildren.com

usually start with PGE_1 dose of 0.05 to 0.1 mcg/kg/min and once the O_2 saturation improves, the dosage is slowly, step-by-step, reduced to 0.015 to 0.02 mcg/Kg/min.

Once the baby is stabilized, alternative methods to more permanently perfuse the lung should be considered and these include: A) Transcatheter perforation of the atretic pulmonary valve along with balloon pulmonary valvuloplasty,^{4,5,12,13} surgical pulmonary valvotomy/enlargement of the RV outflow tract¹⁴⁻¹⁸ or hybrid opening of the pulmonary valve.¹⁹⁻²¹ These procedures are performed also to encourage the growth of the RV so that a biventricular circulation can be established, B) Performing a modified Blalock-Taussig (BT) shunt,^{22,23} or C) Implantation of stent within the ductus.^{4,24,25}

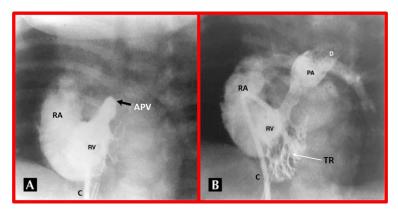
2. Encourage the Growth of the RV

The RV growth may be encouraged by transcatheter, surgical or hybrid approaches:

Transcatheter Perforation of the Pulmonary Valve

Prologue

Transcatheter opening of the pulmonary valve provides most natural way of perfusing the pulmonary circulation in patients with PA with IVS and is the most frequently performed procedure around the world to address this condition. In addition, the growth of the RV is encouraged by opening the pulmonary valve.^{2,3,5} Initially, blunt ends of coronary guide wires^{4,26} (Figure 1), laser wires^{27,28} and coronary recanalization wires^{29,30} were used to perforate the pulmonary valve and more recently, radio frequency wires³¹⁻³⁴ were utilized for this purpose. Once the guidewire is positioned across the pulmonary valve, balloon pulmonary valvuloplasty is performed with progressively larger balloons.


Indications and Contraindications

Patients with bipartite or tripartite ventricles with mild to moderate hypoplasia are candidates for transcatheter opening of the pulmonary valve. However, one must first ensure that there is no RV-dependent coronary circulation (RV-DCC). Contraindications for performing the procedure are infundibular atresia and evidence for RV-DCC. Of course, the procedure should not be undertaken if the tip of the catheter could not be positioned directly beneath the atretic pulmonary valve apparatus.

Procedure

The technique of percutaneous treatment of PA with IVS was described in the past^{4-6,12,13,35-37} and will be reviewed here briefly. The usual hemodynamic data are secured and appropriate angiography performed to confirm the diagnosis of PA with IVS, with particular attention to exclude RV-DCC. Selective cineangiography of the RV in sitting-up (15° left anterior oblique and 35° cranial) and straight lateral projections (**Figure 2A**) is performed to evaluate the size and partite status of the RV and to establish the membranous nature of the atretic pulmonary valve membrane. If necessary, simultaneous RV and pulmonary artery angiograms (**Figure 3**) are secured. These images also serve as roadmaps during the procedure.

A #4- or 5F right coronary artery catheter (Cook, Bloomington, IN) or a similar catheter is advanced into the RV outflow tract and the catheter tip is manipulated so that it is apposed against the center of the atretic pulmonary valve membrane (Figure 4). If necessary, main pulmonary artery cine-angiogram (Figure 5) may be performed to ensure accurate positioning of the catheter tip. The techniques of usage of blunt ends of coronary guide wires,^{4,5,26} laser wires^{27,28} and coronary recanalization

FIGURE 2A. Cine-angiographic images of the right ventricle (RV) in a sitting-up view secured before (A) and 15 minutes after (B) perforation of the atretic pulmonary valve (APV) membrane (thick arrow) as shown in Figure 1 and balloon pulmonary valvuloplasty. A small and heavily trabeculated RV is seen without anterograde flow into the pulmonary artery.

FIGURE 2B. After the procedure the pulmonary artery (PA) is opacified. Pulmonary end of the ductus arteriosus (D) is also seen. A larger proportion of the trabecular (TR) component of the RV is also seen following the opening of the pulmonary valve. Significant tricuspid regurgitation, opacifying the right atrium (RA) is seen both before and after opening the pulmonary valve. (C) catheter. Modified from Reference 4.

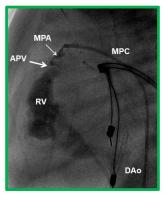
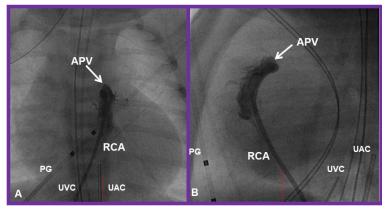



FIGURE 3 Cine image from lateral view of simultaneous injection of contrast material into right ventricle (RV) and main pulmonary artery (MPA) (thin arrow) in a newborn baby with pulmonary atresia with intact ventricular septum illustrating thin atretic pulmonary valve (APV) (thick arrow). MPA angiogram was performed via a multipurpose catheter (MPC) introduced into the MPA from the descending aorta (DAo) through a patent ductus arteriosus (not marked). Unlabeled artifacts are

seen and are related to radiofrequency equipment placed beside the baby. Modified from Reference 36.

FIGURE 4 Cine-angiographic images of the right ventricular outflow tract in postero-anterior (A) and straight lateral (B) projections in a baby with pulmonary atresia with intact ventricular septum illustrating the location of the tip of the right coronary artery (RCA) catheter beneath the atretic pulmonary valve (APV) (arrows in A and B). PG, pigtail catheter used for calibration purposes; UAC, umbilical artery catheter; UVC, umbilical venous catheter. Reproduced from Reference 36.

Medtronic

Harmony™ Transcatheter Pulmonary Valve

Made for **this**

Treating congenital heart disease patients with native or surgically repaired RVOT and severe pulmonary regurgitation takes focus. The Harmony TPV is made for this moment. It's the first FDA approved minimally invasive valve specifically designed for the native RVOT.

Learn more at medtronic.com/madeforthis

Indications

The Harmony[™] transcatheter pulmonary valve (TPV) system is indicated for use in the management of pediatric and adult patients with severe pulmonary regurgitation (i.e., severe pulmonary regurgitation as determined by echocardiography and/or pulmonary regurgitant fraction ≥ 30% as determined by cardiac magnetic resonance imaging) who have a native or surgically-repaired right ventricular outflow tract and are clinically indicated for surgical pulmonary valve replacement.

Contraindications

The following are contraindications for the use of this device: active bacterial endocarditis or other active infections, known intolerance to Nitinol (titanium or nickel), or an anticoagulation/antiplatelet regimen.

Warnings

General: Implantation of the Harmony TPV system should be performed only by physicians who have received Harmony TPV system training. The transcatheter pulmonary valve (TPV) is to be used only in conjunction with the Harmony delivery catheter system (DCS). This procedure should only be performed where emergency pulmonary valve surgery can be performed promptly. Do not use any of the Harmony TPV system components if any of the following has occurred: it has been dropped, damaged, or mishandled in any way, or if the use-by date has elapsed.

Transcatheter pulmonary valve (TPV): This device was designed for single use only. Do not reuse, reprocess, or resterilize the TPV. Reuse, reprocessing, or resterilization may compromise the structural integrity of the device and/or create a risk of contamination of the device, which could result in patient injury, illness, or death. Do not resterilize the TPV by any method. Exposure of the device and container to irradiation, steam, ethylene oxide, or other chemical sterilants renders the device unfit for use. The device is packaged with a temperature sensor. Do not freeze the device. Do not expose the device to extreme temperatures. Do not use the device if the arrow on the sensor points to the symbol that indicates that the temperature limit has been exceeded. Do not use the device if any of the following have occurred: the tamper-evident seal is broken, the serial number tag does not match the container label, the arrow on the sensor points to the symbol that indicates that the temperature limit has been exceeded, or the device is not completely covered by the storage solution. Do not contact any of the Harmony TPV system components with cotton or cotton swabs. Do not expose any of the Harmony TPV system components to organic solvents, such as alcohol. Do not introduce air into the catheter. Do not expose the device to solutions other than the storage and rinse solutions. Do not add or apply antibiotics to the device, the storage solution, or the rinse solution. Do not allow the device to dry. Maintain tissue moisture with irrigation or immersion. Do not attempt to repair a damaged device. Do not handle the valve leaflet tissue or use forceps to manipulate the valve leaflet tissue. Do not attempt to recapture the device once deployment has begun. Do not attempt to retrieve the TPV if any one of the outflow TPV struts is protrucing from the capsule. If any one of the outflow TPV struts has deployed from the capsule, the TPV must be released from the catheter before the catheter can be withdrawn. Do not attempt postimplant balloon dilatation (PID) of the TPV during the procedure, which may cause damage to or failure of the TPV leading to injury to the patient resulting in reintervention.

Delivery catheter system (DCS): This device was designed for single use only. Do not reuse, reprocess, or resterilize the DCS. Reuse, reprocessing, or resterilization may compromise the structural integrity of the device and/or create a risk of contamination of the device, which could result in patient injury, illness, or death. Do not reuse or resterilize the DCS. If resistance is met, do not advance the guidewire, DCS, or any other component without first determining the cause and taking remedial action. Do not remove the guidewire from the DCS at any time during the procedure.

Precautions

General: Clinical long-term durability has not been established for the Harmony TPV. Evaluate the TPV performance as needed during patient follow-up. The safety and effectiveness of Harmony TPV implantation in patients with pre-existing prosthetic heart valve or prosthetic ring in any position has not been demonstrated. The Harmony TPV system has not been studied in female patients of child-bearing potential with positive pregnancy.

Before use: Exposure to glutaraldehyde may cause irritation of the skin, eyes, nose, and throat. Avoid prolonged or repeated exposure to the chemical vapor. Use only with adequate ventilation. If skin contact occurs, immediately flush the affected area with water (for a minimum of 15 minutes) and seek medical attention immediately. The TPV and the glutaraldehyde storage solution are sterile. The outside of the TPV container is nonsterile and must not be placed in the sterile field. The TPV and DCS should be used only in a sterile catheterization laboratory (cath lab) environment. Ensure that sterile technique is used at all times. Strictly follow the TPV rinsing procedure. For TPV 25: Ensure that all green sutures have been removed from the attachment suture loops on the TPV before loading onto the DCS. Prevent contamination of the TPV, its storage solution, and the DCS with glove

powder. Verify the orientation of the TPV before loading it onto the DCS. The inflow end of the TPV with attachment suture loops must be loaded first. Do not place excessive pressure on the TPV during loading. Inspect the sealed DCS packaging before opening. If the seal is broken or the packaging has been damaged, sterility cannot be assured. Proper functioning of the DCS depends on its integrity. Use caution when handling the DCS. Damage may result from kinking, stretching, or forceful wiping of the DCS. This DCS is not recommended to be used for pressure measurement or delivery of fluids. Carefully flush the DCS and maintain tight DCS connections to avoid the introduction of air bubbles.

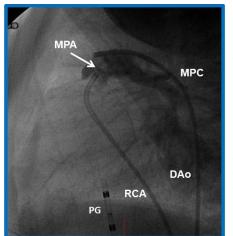
During use: The TPV segment is rigid and may make navigation through vessels difficult. Do not advance any portion of the DCS under resistance. Identify the cause of resistance using fluoroscopy and take appropriate action to remedy the problem before continuing to advance the DCS. Careful management of the guidewire is recommended to avoid dislodgement of the TPV during DCS removal. Once deployment is initiated, retrieval of the TPV from the patient is not recommended. Retrieval of a partially deployed valve may cause mechanical failure of the delivery catheter system or may cause injury to the patient. Refer to the section below for a list of potential adverse events associated with Harmony TPV implantation. During deployment, the DCS can be advanced or withdrawn prior to the outflow struts protruding from the capsule. Once the TPV struts contact the anatomy during deployment, it is not recommended to reposition the device. Advancing the catheter forward once the TPV struts make contact with the anatomy may lead to an undesired deployment or may cause damage to or failure of the TPV and injury to the patient. Refer to the section below for a list of potential adverse events associated with the Harmony TPV implantation. Physicians should use judgment when considering repositioning of the TPV (for example, using a snare or forceps) once deployment is complete. Repositioning the bioprosthesis is not recommended, except in cases where imminent serious harm or death is possible (for example, occlusion of the main, left, or right pulmonary artery). Repositioning of a deployed valve may cause damage to or failure of the TPV and injury to the patient. Refer to the section below for a list of potential adverse events associated with the Harmony TPV implantation. Ensure the capsule is closed before DCS removal. If increased resistance is encountered when removing the DCS through the introducer sheath, do not force passage. Increased resistance may indicate a problem and forced passage may result in damage to the device and harm to the patient. If the cause of resistance cannot be determined or corrected, remove the DCS and introducer sheath as a single unit over the guidewire, and inspect the DCS and confirm that it is complete. If there is a risk of coronary artery compression, assess the risk and take the necessary precautions. Endocarditis is a potential adverse event associated with all bioprosthetic valves. Patients should make their healthcare providers aware that they have a bioprosthetic valve before any procedure. Post-procedure, administer appropriate antibiotic prophylaxis as needed for patients at risk for prosthetic valve infection and endocarditis. Prophylactic antibiotic therapy is recommended for patients receiving a TPV before undergoing dental procedures. Post-procedure, administer anticoagulation and/or antiplatelet therapy per physician/clinical judgment and/or institutional protocol. Excessive contrast media may cause renal failure. Preprocedure, measure the patient's creatinine level. During the procedure, monitor contrast media usage. Conduct the procedure under fluoroscopy. Fluoroscopic procedures are associated with the risk of radiation damage to the skin, which may be painful, disfiguring, and long term.

Potential Adverse Events

Potential risks associated with the implantation of the Harmony TPV may include, but are not limited to, the following: • death • valve dysfunction • tissue deterioration • hematoma • heart failure • cerebrovascular incident • perforation • rupture of the right ventricular outflow tract (RVOT) • compression of the aortic root • compression of the coronary arteries • sepsis • pseudoaneurysm • erosion • stent fracture • arrhythmias • device embolization or migration • pulmonary embolism • occlusion of a pulmonary artery • laceration or rupture of blood vessels • device misorientation or misplacement • valve deterioration • regurgitation through an incompetent valve • physical or chemical implant deterioration • paravalvular leak • valve dysfunction leading to hemodynamic compromise • residual or increasing transvalvular gradients • progressive stenosis and obstruction of the implant • hemorrhage • endocarditis • thromboembolism • thrombosis • thrombus • intrinsic and extrinsic calcification • bleeding • bleeding diathesis due to anticoagulant use • fever • pain at the catheterization site • allergic reaction to contrast agents • infection • progressive pulmonary hypertension • progressive neointimal thickening and peeling • leaflet thickening • hemolysis. General surgical risks applicable to transcatheter pulmonary valve implantation: • abnormal lab values (including electrolyte imbalance and elevated creatinine) • allergic reaction to antiplatelet agents, contrast medium, or anesthesia • exposure to radiation through fluoroscopy and angiography • permanent disability.

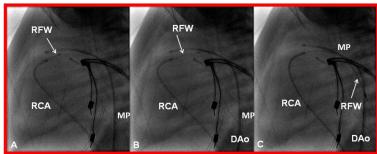
Please reference the Harmony TPV system instructions for use for more information regarding indications, warnings, precautions, and potential adverse events.

 $\ensuremath{\mathsf{CAUTION:}}$ Federal law (USA) restricts these devices to the sale by or on the order of a physician.


Medtronic

710 Medtronic Parkway Minneapolis, MN 55432-5604 USA Tel: (763) 514-4000 Fax: (763) 514-4879 Toll-free: (800) 328-2518 LifeLine CardioVascular Technical Support Tel: (877) 526-7890 Tel: (763) 526-7890 Fax: (763) 526-7888 rs.structuralheart@medtronic.com

©2022 Medtronic. All rights reserved. Medtronic and the Medtronic logo are trademarks of Medtronic. All other brands are trademarks of a Medtronic company.


UC202307963 EN 11/2022

medtronic.com

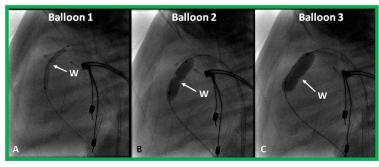


FIGURE 5 Cine-angiographic image of the main pulmonary artery (MPA) in a lateral view; the contrast was injected through a multipurpose catheter (MPC) placed into the MPA from the descending aorta (DAo) via a patent ductus arteriosus (not marked) in a neonate with pulmonary atresia with intact ventricular septum. This cine frame demonstrates the location of the tip of

the right coronary artery (RCA) catheter in apposition to the atretic pulmonary valve. PG, pigtail catheter used for calibration purposes. Modified from Reference 36.

FIGURE 6 A & B) Cine-radiographic images in straight lateral projections displaying the radiofrequency wire (RFW) (arrows) as it is gradually advanced from the right coronary artery (RCA) catheter into the main pulmonary artery and then into the descending aorta (DAo) via the ductus arteriosus (not labelled). **C)** A multipurpose catheter (MP) from the DAo is seen to be positioned in the pulmonary artery via the ductus arteriosus (not labelled) (A, B and C) and served as a guide during the procedure. Unlabeled artifacts are seen and are related to radiofrequency equipment placed beside the baby. Modified from Reference 36.

FIGURE 7 Cine-radiographic frames in straight lateral projections displaying images of balloon dilatation catheters placed across the pulmonary valve following radiofrequency perforation of the atretic pulmonary valve. Progressively larger sized balloons are used and waisting (W) of the balloon (arrows in A, B & C) are seen during the early phases of inflation of the balloons. The waists disappeared after complete inflation of the balloons (not shown). Unlabeled artifacts are seen and are related to radiofrequency equipment placed beside the baby. Modified from Reference 36.

wires^{29,30} in crossing the atretic pulmonary valve have been described in the respective publications^{4,5,26-30} and will not be reviewed. Now that radiofrequency guidewires are approved for clinical use by the Food and Drug Administration (FDA) and are commercially available (Baylis Medical Corporation (BMC), Montreal, Canada), we will describe the technique that we use in perforating the atretic pulmonary valve with radiofrequency guidewires.

A Protrach[™] Micro catheter (BMC) is preloaded with a radiofrequency perforation wire (BMC) and is positioned beneath the atretic pulmonary valve. After confirming the position of the wire (**Figures 4 & 5**), a low power (5 watts) radiofrequency energy is delivered for one to two seconds with BMC radiofrequency perforation generator (BMC). This typically produces perforation of the atretic pulmonary valve. The wire is then advanced either into a branch pulmonary artery or into the descending aorta (**Figure 6**); our preference is descending aorta since such a position provides greater stability of the wire and facilitates successful progression of the procedure. The outer microcatheter is then pushed forward over the radiofrequency wire across the perforated pulmonary valve and placed into either branch pulmonary arteries or into the descending aorta via the ductus (**Figure 6C**). At this juncture, the radiofrequency wire is swapped with a 0.014" coronary guide wire and the microcatheter removed.

After the tip of the guidewire is stabilized in the pulmonary artery or descending aorta, balloon pulmonary valvuloplasty is undertaken, usually with the use of increasingly larger balloon-diameter catheters (Figure 7). Low profile balloon dilatation catheters such as Tyshak-II or Mini-Tyshak (Braun) of 6 to 8 mm balloon diameter are positioned over the wire, the balloon is inflated with diluted (1 in 4) contrast material, and the pulmonary valve dilated. In most patients, pre-dilation with 3or 4-mm coronary balloon dilatation catheter may be needed (Figure 7A). The final balloon size should be 1.2 to 1.25 times the diameter of the pulmonary valve annulus. In patients in whom it is not feasible to advance the balloon catheter across the pulmonary valve, snaring the guidewire in the descending aorta and holding it tight may help advance the balloon catheter; we have occasionally used this technique to accomplish the procedure. After completion of the procedure, pressure pullback tracing across the pulmonary valve and RV outflow tract to document residual gradients are made and RV angiography performed (Figures 2B).

While radiofrequency wire perforation of the atretic pulmonary valve is the most frequent method used currently, perforation of the atretic pulmonary valve with the stiff ends of coronary wires,^{4,5,26} laser wires^{27,28} and coronary recanalization wires^{29,30} has been shown to be similarly effective in achieving the objective of crossing the atretic pulmonary valve.

Surgical Relief of Pulmonary Outflow Obstruction

Trans-ventricular^{15,16} and trans-pulmonary arterial^{14,17} closed pulmonary valvotomy procedures without using cardiopulmonary bypass were used in the past, but are no longer used routinely. At the present time, pulmonary valvotomy is performed via an incision in the pulmonary artery under cardiopulmonary bypass along with mild hypothermia as deemed appropriate. If the pulmonary valve annulus is small, it is enlarged using a pericardial patch or other prosthetic materials. If RV infundibular obstruction coexists, it is also enlarged with a RV outflow tract patch.^{14,18,38}

Hybrid Procedure

Some centers have used a hybrid approach if transcatheter intervention did not achieve an appropriate catheter position suitable to perforate the pulmonary valve safely or de novo. The heart is exposed by a sternotomy by the surgeon and the cardiologist introduces a needle through the RV outflow tract and perforates the atretic pulmonary valve. Then sequential balloon dilatations were performed (as describe above) by the balloon valvuloplasty catheters introduced through the RV

outflow tract. Such procedures may be undertaken in a regular surgical theater using transesophageal echo guidance and nominal fluoroscopy, or in a hybrid catheterization-surgical suite.¹⁹⁻²¹

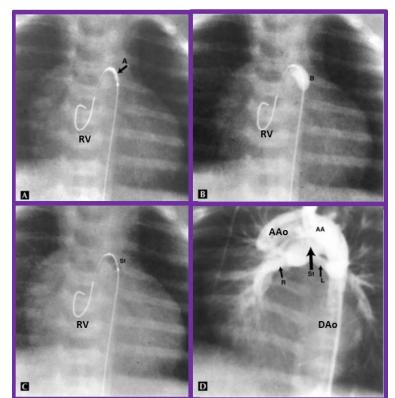
Comments

The concept that the hypoplastic RV will grow in size following opening of the pulmonary valve was introduced in mid 1970s² and reiterated subsequently.³⁻⁶ Other investigators³⁹⁻⁴¹ confirmed these observations in that they demonstrated growth of the RV following relief of RV outflow obstruction, although improvement in tricuspid annular size did not seem to occur. Consequently, opening of the atretic pulmonary valve either by surgical or transcatheter methodology should be pursued in PA with IVS patients provided there is no RV-DCC.

In spite of complete opening of the pulmonary valve by any of the above-described methods and establishing forward flow across the pulmonary valve, a significant number of patients remain hypoxemic, related to right to left shunt across the patent foramen ovale/atrial septal defect (PFO/ASD) which is largely secondary to decreased RV compliance. Such arterial desaturation is addressed by re-initiation of PGE₁ administration, creation of a BT shunt or stenting of the ductus arteriosus. The latter two procedures were initially performed after unsuccessful attempts to wean off of PGE₁. However, some cardiologists/cardiac surgeons are advocating that these procedures are undertaken at the time as the opening of the pulmonary valve.^{41,42}

Blalock-Taussig Shunt

A number of procedures have been used in the past to augment pulmonary blood flow, as reviewed elsewhere.⁹ Among these, BT shunt has become an attractive surgical procedure to provide pulmonary blood flow. This procedure was originally described by Blalock and Taussig in which the subclavian artery is anastomosed to the ipsilateral pulmonary artery²² and is now called classic BT shunt. The procedure was modified by de Leval and his colleagues²³ in which a Gore-Tex tube graft is inserted between the right or left subclavian artery and the branch pulmonary artery on the same side. This procedure is usually performed via a lateral thoracotomy. Some surgeons perform the procedure via mid-sternotomy.


The indications for this procedure are severely hypoplastic, unipartite or bipartite RV,^{4,12,13} failure to keep satisfactory arterial oxygen saturation (> 70%) following successful transcatheter opening of the atretic pulmonary valve^{4,12,13} and patients with RV-DCC.³⁷ Because of uncertain outcome following surgical opening of the pulmonary valve, some institutions advocate performing BT shunt at the time initial surgery.⁴¹

Implantation of Stent Within the Ductus Arteriosus

The technique of ductal stenting in patients with PA with IVS was reviewed in the past^{4,5,36,37} and will be described here briefly.

Indications and Contraindications

The indications for ductal stenting are similar to those mentioned for BT shunt placement. Because of uncertain outcome following transcatheter opening of the pulmonary valve, some institutions advocate implanting ductal stents at the time of initial procedure.⁴² Contraindications are markedly tortuous ductus arteriosus and nonavailability of all materials necessary for ductal stenting. Left pulmonary artery stenosis is another contraindication,²⁵ although such an abnormality is more likely to be seen in patients with PA with ventricular septal defect.

FIGURE 8 A) Cine-radiographic image illustrating the position of the distal end of the guidewire placed in the right ventricle (RV) through the ductus arteriosus and main pulmonary artery (not marked). The uninflated stent is located within the ductus and the arrow (A) identifies the articulation within the stent. **B)** This cine image demonstrates inflated balloon (B). **C)** The balloon is deflated and removed leaving the stent (St) within the ductus. **D)** Cine-angiographic picture of aortic arch (AA) in left anterior oblique view showing visualization of the St (large arrow) within the ductus and the right (R) and left (L) pulmonary arteries (small arrows). AAo, ascending aorta; DAo, descending aorta. Modified from Reference 5.

Procedure

At first, cine-aortography in straight lateral and sitting-up (15^o left-anterior oblique and 35° cranial) or 30° right anterior oblique projections is performed to demonstrate the morphology of the ductus arteriosus. The ductal length and minimal ductal diameter are measured. Frozen frames of the aortograms serve as road maps during the procedure. Once the ductal morphology is assessed, a #4-French right coronary artery, a cut-pigtail catheter, or a similar catheter is placed in the aortic arch and its tip is pointed against the aortic ampulla of the ductus. The tip of a 0.014-in coronary guide wire (Choice PT Extra S'port [Boston Scientific], Hi Torque Spartacore guide wire [Guidant] or a similar wire) is advanced into the ductus and from that position conveyed into either distal left or right pulmonary arteries. If the tip of the guidewire crosses the pulmonary valve and enters the RV (Figure 8A), such a wire position is also accepted. There is a possibility of change in ductal length following its straightening by the introduction of the guidewire; therefore, we recommend remeasuring the ductal length by performing a test angiogram with guidewire across the ductus. At this juncture, the catheter used for angiography is withdrawn and the femoral arterial sheath exchanged with a #4-French (or #5-French) long sheath (Cook, Bloomington, IL). Alternatively, stent implantation may be performed without the long sheath as per the interventionalist's preference. A 3.5 to 4.5 mm diameter pre-mounted coronary stent is selected for deployment; stent diameter choice is based on the measured minimal ductal

Two Full-Time Ambulatory Pediatric Cardiologists

Inova LJ Murphy Children's Hospital is seeking two full-time ambulatory pediatric cardiologists to support our rapidly growing team within Inova Children's Heart Center.

Responsibilities and Practice Details:

- The Division of Pediatric Cardiology includes 20 board-certified pediatric cardiologists and 5 APPs.
- Inova Children's Heart Center is a comprehensive team, including congenital cardiac surgery, outpatient cardiology, fetal cardiology, non-invasive cardiology, adult congenital cardiology, fetal cardiology, diagnostic and interventional catheterization, and electrophysiology.
- The candidate should have a passion for advanced training in noninvasive imaging while possessing professional, clinical, and leadership skills
- Responsibilities will include a mix of outpatient general pediatric cardiology and inpatient service, including a ward/consult service and/ or stepdown team.
- One individual will primarily work in our Leesburg/Gainesville region.
- One individual will primarily work in the Winchester region.
- Flexibility, strong communication and collaborative skills are key.
- This position will work with the Chief of Pediatric Cardiology and Heart Center leadership to execute personal and programmatic goals focused on the fundamentals of extraordinary care: safety, quality, patient experiences, access, and stewardship.
- Seeking a candidate who thrives in an environment based on teamwork, collaboration and dedication to patients, families, and each other.
- Although patient care is our primary focus, education and research are encouraged and supported by a dedicated research team.

Position Highlights:

- Highly competitive salary with incentives
- Full Medical, dental and vision
- Generous PTO and paid time to attend CME
- Paid Parental Leave Program
- Located Northern Virginia

Inova L.J. Murphy Children's Hospital is a 226-bed children's hospital based at Inova Fairfax Medical Campus and is dedicated to providing care in a welcoming environment that offers the latest in technical innovation and kidfriendly spaces. Other features of our hospital include:

- Level IV Neonatal ICU
- Pediatric ICU and Pediatric Cardiac ICU
- Inova Children's Cancer Center
- Level One Trauma Center
- Multidisciplinary, complex pediatric care
- Pediatric Emergency Department that sees over 100,000 patients annually.
- Child Life Services dedicated in each inpatient space and outpatient procedural area.
- Specialized air and ground transport service
- Ronald McDonald House

Requirements:

- Board-certified/eligible in Pediatric Cardiology
- Able to obtain an unrestricted Virginia Medical License.
- Eligible for faculty appointment at The University of Virginia School of Medicine

Interested Candidates should reach out to: Mitchell Cohen, MD, FACC, FHRS

Chief of Pediatric Cardiology, Co-Director of the Children's Heart Center Mitchell.cohen@inova.org

E INOVA° L.J. Murphy Children's Hospital

Medical Director of Non-Invasive Cardiovascular Imaging

Inova LJ Murphy Children's Hospital is seeking a full-time pediatric cardiologist to serve as Medical Director of Non-Invasive Cardiovascular Imaging to support our rapidly growing team within Inova Children's Heart Center.

Responsibilities and Practice Details:

- The Division of Pediatric Cardiology includes 20 board-certified pediatric cardiologists and 5 APPs.
- Inova Children's Heart Center is a comprehensive team, including congenital cardiac surgery, outpatient cardiology, fetal cardiology, noninvasive cardiology, adult congenital cardiology, fetal cardiology, diagnostic and interventional catheterization, and electrophysiology.
- Our services include fetal, transthoracic, and transesophageal echocardiography, and a partnership with radiology on cMRI and CT scans. The division is supported by a dedicated team of inpatient and outpatient congenital sonographers.
- Routine patient care will include outpatient clinic, inpatient consultation, supervision of APPs, and hospital service.
- The candidate should have advanced training in non-invasive imaging while possessing professional, clinical, and leadership skills.
- This position will work with the Chief of Pediatric Cardiology and Heart Center leadership to execute personal and programmatic goals focused on the fundamentals of extraordinary care: safety, guality, patient experiences, access, and stewardship.
- Seeking a candidate that thrives in an environment based on teamwork, collaboration and dedication to patients, families, and each other.
- Although patient care is our primary focus, education and research are encouraged and supported by a dedicated research team.

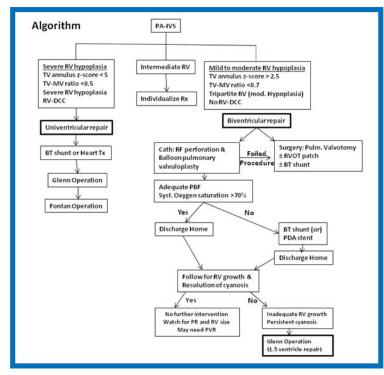
Position Highlights:

- Highly competitive salary with incentives
- Full Medical, dental and vision
- Generous PTO and paid time to attend CME
- Paid Parental Leave Program
- Located Northern Virginia

Inova L.J. Murphy Children's Hospital is a 226-bed children's hospital based at Inova Fairfax Medical Campus and is dedicated to providing care in a welcoming environment that offers the latest in technical innovation and kid-friendly spaces. Other features of our hospital include:

- Level IV Neonatal ICU
- Pediatric ICU and Pediatric Cardiac ICU
- Inova Children's Cancer Center
- Level One Trauma Center
- Multidisciplinary, complex pediatric care
- Pediatric Emergency Department that sees over 100,000 patients annually Child Life Services dedicated in each inpatient space and outpatient •
- procedural area Specialized air and ground transport service
- Ronald McDonald House

Requirements:


- Board-certified/eligible in Pediatric Cardiology
- Able to obtain an unrestricted Virginia Medical License.
- The ideal candidate will have extensive experience in the field, specifically in the area of echocardiography (TTE, TEE, etc).
- Preference will be given to those with experience at higher volume centers and demonstrated leadership roles in imaging.
- Additional preference will be given to those with previous experience or education in medical administration and those who have clinical research experience.
- Eligible for faculty appointment at The University of Virginia School of Medicine

Interested Candidates should reach out to: Mitchell Cohen, MD, FACC, FHRS Chief of Pediatric Cardiology, Co-Director of the Children's Heart Center Mitchell.cohen@inova.org

Ŷ

PULMONARY ATRESIA WITH INTACT VENTRICULAR SEPTUM - PART II

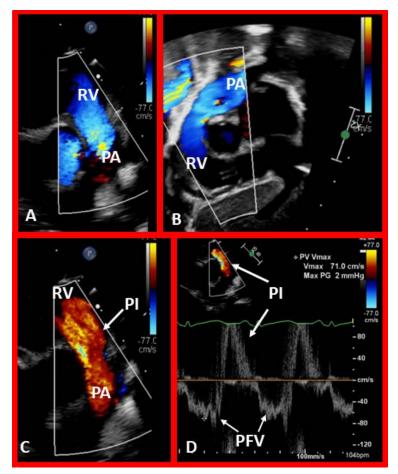


FIGURE 9 An algorithm for clinical decision-making in pulmonary atresia with intact ventricular septum (PA-IVS). This algorithm is partly based on References 13, 59 and 66. BT, Blalock-Taussig shunt; MV, mitral valve; PBF, pulmonary blood flow; PDA, patent ductus arteriosus; PR, pulmonary regurgitation; PVR, pulmonary valve replacement; RF, radiofrequency; RV, right ventricle; RV-DCC, right ventricular dependent coronary circulation; RVOT, right ventricular outflow tract; Rx, treatment; TV, tricuspid valve; Tx, transplant. Reproduced from Reference 13.

diameter and weight of the infant (<3.0 kg - 3.5 mm diameter stent; 3.0 to 4.0 kg - 4.0 mm; 4.0 to 5 kg - 4.5 mm^{43,44}). The length of the stent should be 1 to 2 mm longer than the measured length of the ductus. The selected stent is advanced through the arterial sheath, but over the guidewire already in position and deployed across the ductus arteriosus by inflating the balloon (Figures 8B and 8C). If a long sheath was used for stent deployment, the sheath is withdrawn into the descending aorta before balloon inflation. Several types of stents are available for use³⁶ and selection of the type of stent is mostly based on the availability at that particular time at a given institution. Following successful stent deployment, the deflated balloon is cautiously withdrawn without dislodging the stent. Similarly, the guidewire is also taken out. It is critical to ensure that the entire length of the ductus is covered by the stent in an attempt to prevent constriction of the unstented ductus. A repeat aortogram is performed to demonstrate patency of the stent and visualization of the branch pulmonary arteries (Figure 8D). PGE, is discontinued shortly before inflating the balloon. Measurement of systemic arterial oxygen saturation and PO₂ is done before removal of the catheters and sheaths used during the procedure.

Comparison of Blalock-Taussig Shunts and Ductal Stents

When relative merits of these two procedures in maintaining adequate pulmonary flow were examined,⁴⁵ procedural success (~93% for both) and major complication rates were similar between the two cohorts. But the hospital stay was shorter for the ductal stent group (10 days vs. 23 days). Need for acute re-intervention was more frequent for BT shunt group (31% vs. 8%) than for the ductal stent group while post-discharge re-interventions occurred more often in the ductal stent

FIGURE 10 Selected echo images from parasternal (A, C & D) and subcostal (B) views demonstrating laminar flow across the pulmonary valve (A, B & D) and pulmonary insufficiency (PI) (C & D) in a nine-year-old child who had transcatheter opening of the atretic pulmonary valve as a neonate. Note low pulmonary flow velocity (PFV) indicating no residual gradient (D). PA, pulmonary artery; RV, right ventricle.

group (58% vs. 14%). The authors concluded that ductal stents may offer safer and more effective alternative strategy to BT shunts in patients with PA with IVS.⁴⁵ Another study in which these two procedures were compared included patients with several types of heart defects (not just PA with IVS), but concluded that both procedures had similar need for reintervention to sustain acceptable pulmonary blood flow.⁴⁶

3. Provide Satisfactory Egress of Blood Flow From the Right Atrium

If successful opening of the pulmonary valve by any of the methods described in the preceding section can be performed, the egress of the RA blood into the RV will occur naturally. But, in cases with very hypoplastic RVs or those with RV-DCC are usually treated with a BT shunt for providing pulmonary blood flow. In these patients, balloon atrial septostomy^{36,47,48} should be performed to provide unrestricted right to left shunting, as has been demonstrated to be beneficial in a prior study.⁴⁹

4. Separate Right and Left Heart Circuits

All babies, irrespective of type of intervention to open the atretic pulmonary valve during the neonatal period, should be re-evaluated between 6 and 12 months of age (and time-to-time thereafter) to assess the adequacy of relief of RV outflow tract obstruction and to appraise the RV growth. Patients with residual RV outflow tract obstruction should be treated with transcatheter (balloon valvuloplasty) or surgical (resection of obstructive lesion and/ or outflow patch) intervention to relieve the RV outflow obstruction, as deemed appropriate. In patients with adequate-sized RVs, closure of the atrial defect by transcatheter methodology^{50,51} should be performed, preferably following test occlusion⁵⁰ of the atrial defect.

Other Treatment Modalities

A number of other procedures are performed to treat PA with IVS patients and these are bidirectional Glenn,⁵² one and one-half ventricle repair,⁵³ staged Fontan surgery,⁵⁴⁻⁵⁸ Starnes procedure⁵⁹ for tricuspid valve leaflet dysplasia with or without Ebstein's type of abnormality, cardiac transplantation particularly for patients with RV-DCC,^{60,61} and surgical⁶²⁻⁶⁴ or device closure^{50,51,65,66} of PFO/ ASD. Because of limitations of space, these treatment modalities will not be detailed.

Algorithms of Management

How to approach a given PA with IVS patient is largely dependent upon the morphology of the RV. Feasibility of achieving biventricular circulation, going with univentricular palliation or in-between (one and one-half ventricle) should be assessed at the time of initial presentation and time to time thereafter. There is no universally accepted algorithm of management, and the algorithm that we use (Figure 9) is developed on the basis of our experience and that of others.^{3-5,12,13,60,67}

Adequate-sized RV

If the RV is bipartite or tripartite with mild to moderate hypoplasia, the tricuspid valve annulus diameter Z-score is larger than -2.5 and the tricuspid/mitral valve annulus ratio is greater than 0.7, the RV is likely to grow to support the pulmonary circulation^{12,13} and biventricular option should be selected. Transcatheter (preferable) or surgical opening of the pulmonary valve should be undertaken as described in the preceding sections. Of course, absence of RV-DCC should be assured prior to opening of the pulmonary valve. Then, percutaneous closure of the atrial septal defect (if present) should be performed^{50,51,65,66} to maintain normal oxygen saturations and to prevent paradoxical embolism. While opening up the pulmonary valve reduces/abolishes pulmonary valve gradient (Figure 10) with laminar flow across the pulmonary valve (Figure 10 A and B), pulmonary insufficiency (Figure 10 C and D) is present in most patients. Some of these patients may require replacement of the pulmonary valve in their adolescence or adulthood.

Small and Hypoplastic RV

If the RV is unipartite or bipartite with an absent sinus portion, tricuspid valve annulus diameter Z-score is smaller than -5 and the tricuspid/mitral valve annulus ratio is less than 0.5, the RV is unlikely to grow sufficiently to support the pulmonary circulation.^{12,13,68} Consequently, these patients are candidates for single ventricle palliation by Fontan procedure (staged total cavo-pulmonary connection) which would involve BT shunt (or ductal stent) during the neonatal period (along with balloon septostomy or surgical atrial septostomy), bidirectional Glenn⁵² around six months of age and inferior vena caval blood flow diversion into the pulmonary arteries, usually via an extra-cardiac conduit and a fenestration⁵⁵⁻⁵⁸ a year afterwards.

Marginal-sized RV

If the RV morphology falls in between the above two scenarios, transcatheter or surgical opening of the atretic pulmonary valve may not achieve a RV size large enough to support pulmonary circulation. These patients are addressed with one and one-half ventricle repair⁵³ in which bidirectional Glenn procedure⁵² is performed, thus reducing volume that needs to be handled by the RV. The atrial defect should also be closed.

Other Scenarios

RV-DCC

Since PA with IVS patients with RV-DCC do not tolerate opening of the pulmonary valve, they are either addressed with cardiac transplantation, Starnes procedure or by Fontan, largely based institutional preference.

Tricuspid Atresia

In some patients the tricuspid valve is extremely small⁶⁹ and these patients are addressed similar to tricuspid atresia patients⁷⁰⁻⁷² by Fontan procedure in stages as alluded to above.

Tricuspid Valve Regurgitation

In PA with IVS patients with severe tricuspid regurgitation due to valve dysplasia with or without Ebstein's are probably best address by Starnes procedure⁵⁹ during the neonatal period and then staged Fontan.

Summary and Conclusions

A comprehensive program of medical, transcatheter, and surgical treatment strategy is essential to improve the long-term prognosis of these babies. Algorithms of treatment plans based on the size and morphology of the right ventricle, tricuspid annular diameter Z-scores and the presence of RV-DCC should be implemented. In babies with tripartite or bipartite RVs, transcatheter radiofrequency perforation is the first-line therapy at most institutions at the present time. Improving pulmonary blood flow by infusion of PGE₁, stenting the ductus, or a modified Blalock-Taussig shunt may be necessary in some of these babies. These babies will eventually achieve biventricular status. Subjects with a unipartite or very hypoplastic RV or RV-DCC require staged Fontan approach. Cardiac transplantation is used for RV-DCC patients at some institutions. Patients with anatomy between above two scenarios may be addressed with one and one-half ventricle repair. It may be concluded that PA with IVS can be successfully assessed with the presently available diagnostic methods and these patients can effectively be managed with the currently existing medical, catheter interventional, and surgical therapeutic practices.

References

- Rao PS, Rao NS. Pulmonary atresia with intact ventricular septum – Part I. Congenital Cardiology Today 2022; 20:
- Rao PS, Liebman J, Borkat G. Right ventricular growth in a case of pulmonic stenosis with intact ventricular septum and hypoplastic right ventricle. Circulation 1976; 53:389-394.
- Rao PS. Comprehensive management of pulmonary atresia with intact ventricular septum. Ann Thorac Surg 1985; 40:409-413. doi: 10.1016/s0003-4975(10)60082-3.
- Siblini G, Rao PS, Singh GK, Tinker K, Balfour IC. Transcatheter management of neonates with pulmonary atresia and intact ventricular septum. Cathet Cardiovasc Diagn 1997; 42:395-402.
- Rao PS. Pulmonary atresia with intact ventricular septum. Current Treatment Options in Cardiovasc Med 2002; 4:321-336. doi: 10.1007/s11936-002-0012-6.PMID: 12093389
- Rao PS. Current management of pulmonary stenosis and atresia with intact ventricular septum. In: Heart Disease in Neonates and Children, Al Fagih, MR (ed). The Medicine Group, Oxford, England. 1985:109-120.
- Rao PS. An approach to the diagnosis of cyanotic neonate for the primary care provider. Neonatology Today 2007; 2 (6):1-7.
- Rao PS. An approach to the diagnosis of cyanotic neonate for the primary care provider. In. Rao PS, Vidyasagar D. (editors), A Multidisciplinary Approach to Perinatal Cardiology, Volume 1. Cambridge Scholars Publishing, New Castle upon Tyne, UK. 2021:295-312. ISBN-13: 978-1-5275-6744-3; ISBN-10: 1-5275-6744-3.
- Rao PS, Covitz W, Chopra P: Principles of palliative management of patients with tricuspid atresia. In Tricuspid Atresia, edn 2. Edited by Rao PS. Mount Kisco, NY: Futura Publishing Co.; 1992:297-320.
- Olley PM, Coceani F, Bodach E. E-type prostaglandins: A new emergency therapy for certain cyanotic congenital heart malformations. Circulation 1976; 53:728-731.

Pediatric Cardiologist Faculty Position

UCDAVIS

UC Davis Children's Hospital, School of Medicine, Department of Pediatrics Cardiology

The Department of Pediatrics at the University of California, Davis School of Medicine is recruiting a full-time Pediatric Cardiologist. We are recruiting at the Assistant, Associate, or Full Professor ranks in the Clinical Pediatrics or Health Sciences Clinical Series in the Division of Pediatric Cardiology.

The candidate's primary clinical duties include: 1) general outpatient pediatric cardiology in our local clinics as well as our outreach clinics, 2) inpatient consult service, 3) supervise and interpret pediatric electrocardiograms and transthoracic, transesophageal, and fetal echocardiograms. Required skillsets include ability to perform and interpret transesophageal and fetal echocardiograms. It is expected that the candidate will share in the on-call and weekend/holiday coverage schedule.

In addition to the clinical responsibilities, the ideal candidate will be expected to participate in teaching of medical students, residents and fellows, research activities of the Department of Pediatrics, and serve on departmental committees. A background and/or interest in research or quality improvement is preferred.

Candidates must have the following experience/qualifications:

- M.D. or D.O.
- Successful completion of an approved pediatric residency training program
- Successful completion of an approved Pediatric Cardiology fellowship training program at this hire
- Board certification/eligibility in Pediatric Cardiology
- Eligibility for a California Medical License
- Ability to foster collegiality and work collaboratively in a diverse environment
- An additional year of advanced pediatric echocardiography training is preferred

The Pediatric Heart Center at UC Davis Children's Hospital is inland Northern California's only full-service facility for children and young adults with congenital and acquired heart disease offering the most advanced testing and treatments for a range of congenital or acquired cardiovascular conditions. Our integrated multidisciplinary team of 2 CHD surgeons, 9 Pediatric Cardiologists and 6 Nurse Practitioners/PAs along with other pediatric subspecialists and researchers offer Northern California's most sophisticated and specialized expertise in cardiac imaging, diagnostic, interventional, hybrid procedures and cardiac surgery. Other specialized cardiac services of the Program include echocardiography (including fetal, transesophageal, IVUS, and intracardiac), exercise stress testing, electrophysiology testing, radiofrequency and cryoablation and pacemaker services. The CHD program also has an advanced interventional/hybrid fellowship. Other advanced subspecialty cardiac clinics offered include cardiomyopathy and heart failure, pulmonary hypertension, adult congenital heart disease, and interstage for single ventricle infants. To provide more flexibility, accessibility, and timely care for pediatric cardiology patients, the Pediatric Heart Center treats patients in both Sacramento and throughout Northern California at various outreach sites.

Completed applications include CV, Cover Letter, Statement of Teaching, Statement of Contributions to Diversity, Equity, and Inclusion and contact information for 3-5 references. Candidates should submit their application online at: <u>https://recruit.ucdavis.edu/apply/JPF05614</u>.

The salary range for this position is \$235,628 - \$396,166. This position includes membership in the Health Sciences Compensation Plan.

With more than 120 physicians in 33 pediatric subspecialties, the Children's Hospital is a 121- bed hospital housed within the 619-bed University of California, Davis Medical Center. It is the only designated Children's Hospital in the Sacramento region, and is known for offering comprehensive, compassionate, family-centered care. UC Davis Children's Hospital is distinguished for its outstanding congenital heart program and its internationally recognized telemedicine programs. UC Davis Children's Hospital has a 49-bed level 4 Neonatal Intensive Care Unit and a new 24-bed Pediatric Intensive Care Unit/Pediatric Cardiac Intensive Care Unit. UC Davis Medical Center is a Baby-Friendly designated birth center.

The UC Davis Children's Hospital is based on the UC Davis Health campus in Sacramento, California and serves a population of over 1 million children in the Northern California, Central Valley and Western Nevada regions. Sacramento is an easily accessible, family-oriented city in close proximity to the San Francisco Bay area, Lake Tahoe and the Sierra Nevada Mountains, the California coast, and Napa Valley.

UC Davis commits to inclusion excellence by advancing equity, diversity and inclusion in all that we do. We are an Affirmative Action/Equal Opportunity employer, and particularly encourage applications from members of historically underrepresented racial/ethnic groups, women, individuals with disabilities, veterans, LGBTQ community members, and others who demonstrate the ability to help us achieve our vision of a diverse and inclusive community. For the complete University of California nondiscrimination and affirmative action policy see: http://policy.ucop.edu/doc/4000376/ NondiscrimAffirmAct. If you need accommodation due to a disability, please contact the recruiting department.

Under Federal law, the University of California may employ only individuals who are legally able to work in the United States as established by providing documents as specified in the Immigration Reform and Control Act of 1986. Certain positions funded by federal contracts or sub-contracts require the selected candidate to pass an E-Verify check. More information is available <u>http://www.uscis.gov/e-verify</u>.

UC Davis is a smoke & tobacco-free campus (http://breathefree.ucdavis.edu/).

- Freed MD, Heymann MA, Lewis AB, et al. Prostaglandin E1 in the infants with ductus arteriosus dependent congenital heart disease: The US experience. Circulation 1981; 64:899-905.
- Balaguru D, Rao PS. Pulmonary atresia with intact ventricular septum. In. Rao PS, Vidyasagar D. (editors). Perinatal Cardiology: A Multidisciplinary Approach, Minneapolis, MN, Cardiotext Publishing, 2015.
- Balaguru D, Rao PS. Pulmonary atresia with intact ventricular septum. In. Rao PS, Vidyasagar D. (editors), A Multidisciplinary Approach to Perinatal Cardiology, Volume 2. Cambridge Scholars Publishing, New Castle upon Tyne, UK. 2021:380-403. ISBN-13: 978-1-5275-6744-3; ISBN-10: 1-5275-6744-3.
- de Leval MR, Bull C, Stark J, et al. Pulmonary atresia with intact ventricular septum: surgical management based on revised classification. Circulation 1982; 66:272-280.
- Daskalopoulos DA, Pieroni DR, Gingell RL, et al. Closed transventricular pulmonary valvotomy in infants: long-term results and the effect of the size of the right ventricle. J Thorac Cardiovasc Surg 1982; 84:187-191.
- Cobanoglu A, Metzdorff MT, Pinson CW, et al. Valvotomy for pulmonary atresia with intact ventricular septum: a disciplined approach to achieve a functioning right ventricle. J Thorac Cardiovasc Surg 1985; 89:482-490.
- 17. Joshi SV, Brawn WJ, Mee RB. Pulmonary atresia with intact ventricular septum. J Thorac Cardiovasc Surg 1986; 91:192-199.
- Foker JE, Braunlin EA, St Cyr JA, et al. Management of pulmonary atresia with intact ventricular septum. J Thorac Cardiovasc Surg 1986; 92:706-715.
- Nathan M, Verma, R, Balaguru, D, Starr, J. A brief review of hybrid procedures for congenital heart disease. HEART VIEWS (Journal of Gulf Heart Association) 2009; 10:156-161.
- Hu R, Zhang H, Dong W, et al. Trans-ventricular valvotomy for pulmonary atresia with intact ventricular septum in neonates: a single-centre experience in mid-term follow-up. Eur J Cardiothorac Surg 2015; 47:168-72. doi: 10.1093/ejcts/ezu085.
- Lin ZQ, Chen Q, Cao H, et al. Transthoracic balloon pulmonary valvuloplasty for treatment of congenial pulmonary atresia patients with intact ventricular septum. Med Sci Monit 2017; 23:4874-4879.
- Blalock A, Taussig HB. The surgical treatment of malformations of the heart in which there is pulmonary stenosis or atresia. J Am Med Assoc 1945; 128:189-194.
- de Leval M, McKay R, Jones M, et al. Modified Blalock-Taussig shunt: Use of subclavian orifice as a flow regulator in prosthetic systemic-pulmonary artery shunts. J Thorac Cardiovasc Surg 1981; 18:112-119.
- 24. Gibbs JL, Orhan U, Blackburn MEC, et al. Fate of stented arterial duct. Circulation 1999; 99:2621-2625.
- Alwi M, Choo KK, Latiff HA, et al. Initial results and medium-term follow-up of stent implantation of patent ductus arteriosus in duct-dependent pulmonary circulation. J Amer Coll Cardiol 2004; 44:438-445.
- Latson LA. Nonsurgical treatment of a neonate with pulmonary atresia and intact ventricular septum by transcatheter puncture and balloon dilatation of the atretic membrane. Am J Cardiol 1991; 68:277-279.
- Parsons JM, Rees MR, Gibbs JL. Percutaneous laser valvotomy with balloon dilatation of the pulmonary valve as primary treatment for pulmonary atresia. Br Heart J 1991; 66:36-38.
- Qureshi SA, Rosenthal E, Tynan M, et al. Transcatheter laser assisted pulmonic valve dilatation in pulmonic valve atresia. Am J Cardiol 1991; 67:428-431.
- Cordero H, Warburton KD, Underwood PL, Heuser RR. Initial experience and safety in the treatment of chronic total occlusions with fiberoptic guidance technology. Catheter Cardiovasc Interv 2001; 54:180-187.
- Alwi M, Budi RR, Mood MC, Leong MC, Samion H. Pulmonary atresia with intact septum: the use of Conquest Pro coronary guide wire for perforation of atretic valve and subsequent interventions. Cardiol Young 2013; 23:197-202. doi: 10.1017/S1047951112000595. Epub 2012 May 29. PMID: 22640635.
- Rosenthal E, Qureshi SA, Chan KC, et al. Radiofrequency-assisted balloon dilatation in patients with pulmonary valve atresia and intact ventricular septum. Br Heart J 1993; 69:347-351.
- Schneider M, Schranz D, Michel-Behnke I, Oelert H. Transcatheter radiofrequency perforation for pulmonary atresia in a 3,060 g infant. Cathet Cardiovasc Diagn 1995; 34:42-45.
- Wright SB, Radtke WA, Gillette PC. Percutaneous radiofrequency valvotomy using a standard 5-Fr electrode catheter for pulmonary atresia in neonates. Am J Cardiol 1996; 73:1370-1372.
- Akagi T, Hashino K, Maeno V, et al. Balloon dilatation of the pulmonary valve in a patient with pulmonary atresia with intact ventricular septum using a commercially available radiofrequency catheter. Pediatr Cardiol 1997; 18:61-63.

- 35. Rao PS. Role of interventional cardiology in the treatment of neonates: Part III. Congenital Cardiol Today 2008; 6(2):1-10.
- Rao PS. Neonatal catheter interventions. In: Vijayalakshmi IB, Ed. Cardiac Catheterization and Imaging (From Pediatrics to Geriatrics), Jaypee Publications, New Delhi, India, 2015:388-432.
- Rao PS. Catheter interventions in the neonate. In. Rao PS, Vidyasagar D. (editors). A Multidisciplinary Approach to Perinatal Cardiology, Volume 1. Cambridge Scholars Publishing, New Castle upon Tyne, UK. 2021:616-716. ISBN-13: 978-1-5275-6722-1; ISBN-10: 1-5275-6722-2.
- Hanley FL, Sade RM, Blackstone EH, et al. Outcomes in neonatal pulmonary atresia with intact ventricular septum. J Thorac Cardiovasc Surg 1993; 105:406-427.
- Lewis AB, Wells W, Lindesmith GG. Right ventricular growth potential in neonates with pulmonary atresia and intact ventricular septum. J Thorac Cardiovasc Surg 1986; 91:835-840.
- Schmidt KG, Cloez JL, Silverman NH. Changes of right ventricular size and function in neonates after valvotomy for pulmonary atresia or critical pulmonary stenosis and intact ventricular septum. J Am Coll Cardiol 1992; 19:1032-1037.
- Kotani Y, Kasahara S, Fujii Y, Eitoku T, Baba K, Otsuki S, Kuroko Y, Arai S, Sano S. A staged decompression of right ventricle allows growth of right ventricle and subsequent biventricular repair in patients with pulmonary atresia and intact ventricular septum. Eur J Cardiothorac Surg 2016; 50:298-303. doi: 10.1093/ejcts/ezw124. Epub 2016 Apr 26.
- 42. Alwi M, Choo KK, Radzi NA, Samion H, Pau KK, Hew CC. Concomitant stenting of the patent ductus arteriosus and radiofrequency valvotomy in pulmonary atresia with intact ventricular septum and intermediate right ventricle: Early in-hospital and medium-term outcomes. J Thorac Cardiovasc Surg 2011; 141:1355-1361. doi: 10.1016/j.jtcvs.2010.08.085.
- Alwi M. Stenting the ductus arteriosus: Case selection, technique and possible complications. Ann Pediatr Cardiol 2008; 1:38-45. doi: 10.4103/0974-2069.41054. PMID: 20300236.
- Alwi M. Stenting the patent ductus arteriosus in duct-dependent pulmonary circulation: techniques, complications and follow-up issues. Future Cardiol 2012; 8:237-250. doi: 10.2217/fca.12.4.
- Mallula K, Vaughn G, El-Said H, et al. Comparison of ductal stenting versus surgical shunts for palliation of patients with pulmonary atresia and intact ventricular septum. Catheter Cardiovasc Interv 2015; 85:1196-202. doi: 10.1002/ccd.25870.
- McMullan DM, Permut LC, Jones TK, Johnston TA, Rubio AE. Modified Blalock–Taussig shunt versus ductal stenting for palliation of cardiac lesions with inadequate pulmonary blood flow. J Thorac Cardiovasc Surg 2014; 147:397-401.
- 47. Rashkind WJ, Miller WW. Creation of an atrial septal defect without thoracotomy. J Am Med Assoc 1966; 196:991-992.
- Rao PS. Role of Interventional Cardiology In Neonates: Part I. Non-Surgical Atrial Septostomy. Congenital Cardiol Today 2007; 5(12):1-12.
- Shams A, Fowler RS, Trusler GA, et al. Pulmonary atresia with intact ventricular septum: report of 50 cases. Pediatrics 1971; 47:370-377.
- 50. Rao PS, Chandar JS, Sideris EB. Role of inverted buttoned device in transcatheter occlusion of atrial septal defect or patent foramen ovale with right-to-left shunting associated with previously operated complex congenital cardiac anomalies. Am J Cardiol 1997; 80:914-921.
- Rao PS. Transcatheter closure of atrial septal defects with right-to-left shunt. In. Rao PS, Kern MJ. (editors) Catheter Based Devices for Treatment of Noncoronary Cardiovascular Disease in Adults and Children. Lippincott, Williams & Wilkins, Philadelphia, PA, 2003:119-128.
- Hopkins RA, Armstrong SE, Serwer GA, et al. Physiologic rationale for a bidirectional cavopulmonary shunt: a versatile complement to the Fontan principle. J Thorac Cardiovasc Surg 1985; 90:391-398.
- Stellin G, Vida VL, Milanesi O, et al. Surgical treatment of complex cardiac anomalies: the "one- and one-half ventricle repair". Eur J Cardiothorac Surg 2002; 22:1043-1049.
- 54. Fontan F, Baudet E. Surgical repair of tricuspid atresia. Thorax 1971; 26:240-248.
- De Leval MR, Kilner P, Gewilling M, et al. Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operation. J Thorac Cardiovasc Surg 1988; 96:682-695.
- 56. Rao PS. Fontan operation: Indications, short- and long-term outcomes. Indian J Pediatr 2015; 82:1147-1156.
- Rao PS. Fontan operation: A comprehensive review. In. Khan I. Editor. Fontan Surgery, InTechOpen, Rijeka, Croatia. 2020. DOI: http://dx.doi.org/ 10.5772/ intechopen.92591.
- 58. Rao PS. Single Ventricle—A Comprehensive Review. Children 2021; 8: 441.

https:// doi.org/10.3390/children 8060441.

- Starnes VA, Pitlick PT, Bernstein D, et al. Ebstein's anomaly appearing in the neonate: a new surgical approach. J Thorac Cardiovasc Surg 1991; 101:1082-1087.
- Satou GM, Perry SB, Gauvreau K, Geva T. Echocardiographic predictors of coronary artery pathology in pulmonary atresia with intact ventricular septum. Am J Cardiol 2000; 85:1319-1324.
- 61. Powell AJ, Mayer JE, Lang P, Lock JE. Outcome in infants with pulmonary atresia, intact ventricular septum, and right ventricle-dependent coronary circulation. Am J Cardiol 2000; 86:1271-1274.
- 62. Gibbon JH Jr. Application of a mechanical heart and lung apparatus to cardiac surgery. In: Recent Advances in Cardiovascular Physiology and Surgery Minneapolis: University of Minnesota, 1953; 107-113.
- Lillehei CW, Cohen M, Warden HE, et al. Direct vision intracardiac surgical correction of the tetralogy of Fallot, pentalogy of Fallot and pulmonary atresia defects: Report of the first 10 cases. Ann Surg 1955; 142:418–445.
- Kirklin JW, Mushane JW, Partick RT, et al. Intracardiac surgery with the aid of a mechanical pump-oxygenator system (Gibbon type): Report of eight cases. Proc Staff Meet Mayo Clin 1955; 30:201-206.
- Rao PS, Harris AD. Recent advances in managing septal defects: Atrial septal defects. 2017; 6:2042. F1000 Faculty Rev:2042 doi: 10.12688/ f1000research.11844.1. PMID: 29250321.
- Rao PS. Outcomes of device closure of atrial septal defects. Children 2020; 7:111; doi:10.3390/children7090111.
- 67. Alwi M. Management algorithm in pulmonary atresia with intact ventricular septum Cathet Cardiovasc Intervent 2006; 67:679-686.
- McArthur JD, Munsi SC, Sukumar IP, Cherian G. Pulmonary atresia with intact ventricular septum. Circulation 1971; 44:740-745.
- 69. Rao PS. Is the term "tricuspid atresia" appropriate? Am J Cardiol 1990; 6:1251-1254.
- Rao PS. Tricuspid atresia. In. Pediatric Cardiovascular Medicine. 2nd Edition, Moller JH, Hoffman JIE (eds.), Wiley-Blackwell/A John Wiley & Sons Ltd., Oxford, UK, 2012:487-508.
- Rao PS. Pediatric tricuspid atresia. Medscape Drugs & Diseases. Updated January 17, 2017. Available at: http://emedicine.medscape.com/ article/900832-overview.
- 72. Rao PS. Congenital malformations of the tricuspid valve: Diagnosis and management-Part I. Ann Vasc Med Res 2022; 9(2): 1143.

P. SYAMASUNDAR RAO, MD

Professor of Pediatrics and Medicine Emeritus Chief of Pediatric Cardiology Children's Heart Institute University of Texas-Houston McGovern Medical School Children's Memorial Hermann Hospital Houston, Texas, USA 713.500.5738 P.Syamasundar.Rao@uth.tmc.edu

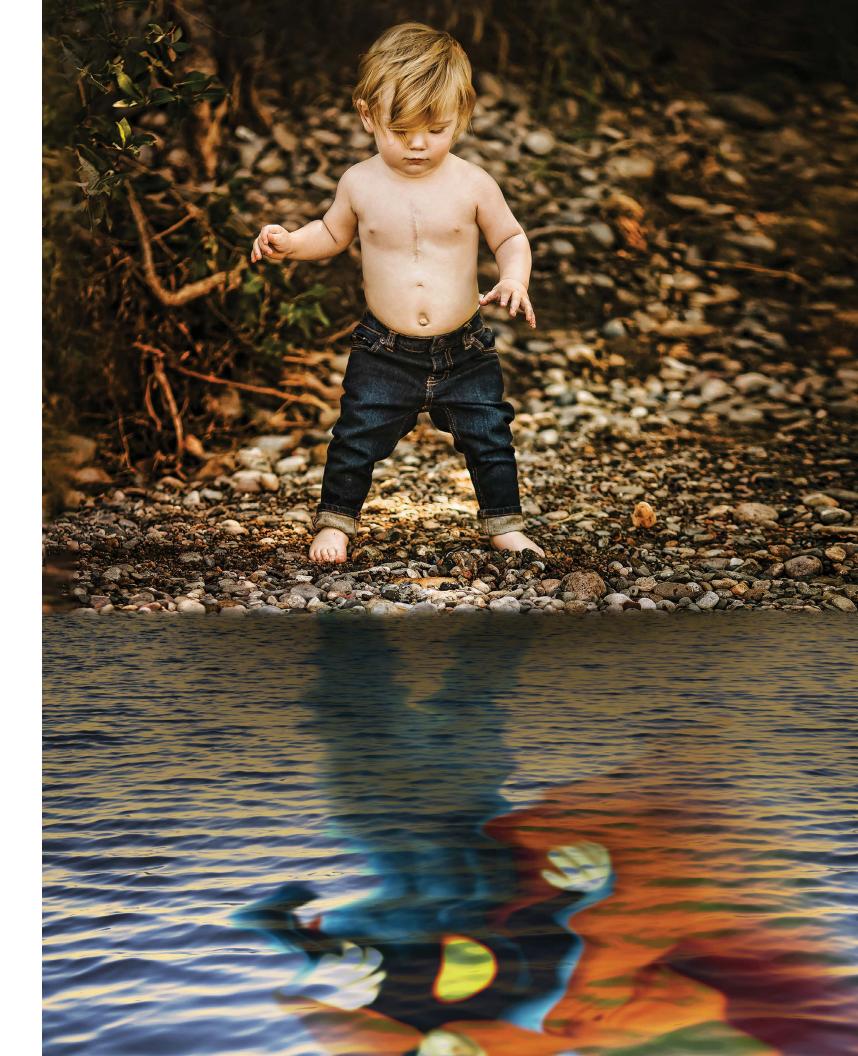
NIKHILA SRI RAO, BS

Accelerated BS/MD Program Scholar SUNY Upstate Medical University Syracuse, New York, USA

Program Directory 2022-2023

Published Mid-August

- Directory of Congenital & Pediatric Cardiac Care Providers in North America
- Updates accepted year round, send to Kate.f.Baldwin@gmail.com
- Contact information at each hospital for Chief of Pediatric Cardiology & Fellowship Director
- Lists each hospital's Pediatric Cardiologists & Cardiothoracic Surgeons
- Lists Pediatric Cardiology Fellowships
- Distributed to Division Chiefs by mail
- Electronic version available on CCT's website homepage: <u>CongenitalCardiologyToday.com/</u> <u>Program-Directory</u>



BELIEVE IN BIG FUTURES.

WE SHARE YOUR COMMITMENT TO PEDIATRIC AND CONGENITAL INTERVENTIONAL CARE.

B. Braun Interventional Systems Inc. | Part of the B. Braun Group of Companies
Bethlehem, PA 18018 | USA | Tel 877-836-2228 | Fax 610-849-1334 | www.bisusa.org
Rx Only
©2021 B. Braun Interventional Systems Inc.

Work-Life Balance: The Expectations and Perspectives as a Female Interventional Cardiologist

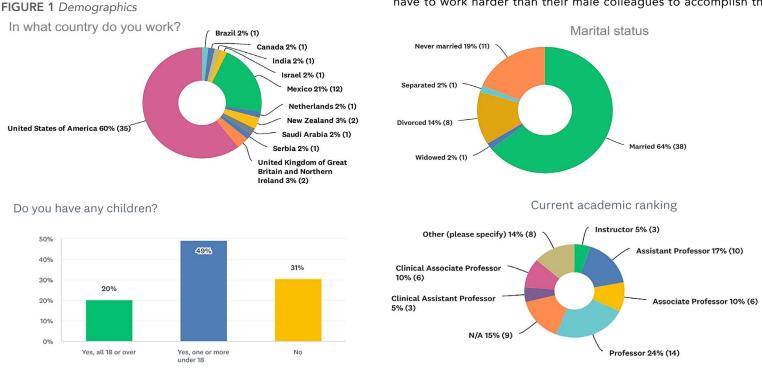
Jenny E. Zablah, MD; Howaida El-Said, MD, PhD; Holly D. Bauser-Heaton, MD, PhD; Priti M. Patel, MD, FSCAI; Natalie Soszyn, MBBS; Vivian Dimas, MD, MBA; On behalf of the Lead Skirts

Introduction

Work-life balance (WLB) refers to the harmony and interference that occurs between work and personal life. WLB can also simply be defined as the equal time of priority to personal and professional activities. This has become a primary concern to all of us wishing to have a good quality of life. A more complex term, Work-life integration (WLI) has become known in more recent years; and refers to the integration of life and work creating synergy between them. WLI works only if it is combined by "balance" in both areas, otherwise there is the concern that it would be difficult to maintain work-life boundaries.

Being women interventional cardiologists seeking career advancement we manage multifaceted roles and responsibilities, and promotion into leadership positions has been marked with increased pressure and frustrations regarding women's roles and our desire to balance our work and non-work lives.

Studies over the years demonstrate the differences in WLB in physicians and especially female physicians. In serial studies by Shanafelt et. al, with the latest one in 2020 and included over 7,500 physicians, the results showed that physicians had a lower rate of satisfaction with WLI than the general US working population (43.6% vs 62.5%; OR, 0.46; 95% CI, 0.421 to 0.512; P<.001). On multivariable analysis of the 2020 data, being female and working more hours per week were independently associated with higher rates of burnout and lower degrees of satisfaction with WLI.^{1,2}

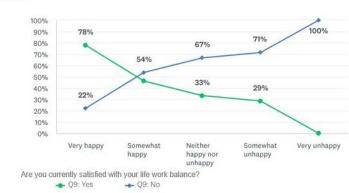

Interventional Women Cardiologists in 2023 and WLB: Objective Data

We decided to understand the current rate of WLB among female interventional cardiologists and some life and work factors that may affect our perception of WLB.

We sent a survey to female congenital interventional cardiologists around the world, participation was anonymous and voluntary. The survey was sent on March 16th, 2023, and 59 responses were collected by March 24th, 2023.

Fifty-nine female interventional cardiologists from 11 different countries completed the survey, 60% of them work in the United States. Seventysix percent are working full time and in academic centers, 64% percent of them are married and 69% have one or more children (49% with children younger than 18 years of age, **Figure 1**).

Only 44% of the interventional cardiologists that answered the survey are satisfied with their work life balance. In contrast, for 78% of them, WLB is extremely or very important. Fifty-nine percent of the women interventionists are somewhat happy or very happy with the opportunities for advancement at their organization, when multivariate analysis was performed, the more unhappy with the advancement opportunities at their organization, the more likely to be unsatisfied with the WLB (Figure 2).


Eighty percent of the surveyed answered that they think that they have to work harder than their male colleagues to accomplish the

WORK-LIFE BALANCE

How happy or unhappy are you with your opportunities for advancement at your organization?

Answered: 59 Skipped: 0

LEAD SKIRTS - 2023- Zablah, El-Said, Bauser-Heaton, Patel, Soszyn, Dimas

FIGURE 2

same work (Figure 3). When multivariate analysis was performed, having kids younger than 18 years old, work in academic practice, and being unhappy with the opportunities for advancement at work were associated with less likely to be satisfied with the WLB. Sixty-four percent of the surveyed said that decreasing the number of hours at work would allow them to accomplish WLB, while 52% said that learning to say "no" was critical to accomplishing this goal. All of the surveyed have hobbies that include sports, music, gardening, and art.

– Jenny E. Zablah, MD

When and How to Say "No"

Cultivating a proper work-life balance is essential to success in both facets of your day, in that you are better able to devote yourself to each respective component when you understand and implement boundaries. A vital aspect of distinguishing your work and personal lives is being able to say no; when you recognize your own limits and make the sometimes-difficult decision to prioritize yourself when faced with favors, you can better commit yourself to the things you are already doing. No one wants to seem unfriendly or unwilling to help those around them, but you cannot properly contribute to society when you stretch yourself too thin.

Simply put, the quality of your work will deteriorate for the sake of quantity. Instead, it is important to realize what is feasibly possible for you to accomplish at a level you would be proud of, and to avoid mistreating yourself by crossing into the realm of the impossible. In fact, saying no can be as simple as-quite literally-saying no, apologizing, and explaining your rationale. Offering a less demanding alternative for yourself can also convey your intentions, characterizing you as responsible and thoughtful while still allowing you to maintain your work-life balance. Emphasizing that the timing of the request is difficult, rather than the nature of the question or the individual posing it, is key. In this manner, saying no can facilitate the preservation of an even proportion of professional and personal tasks in your day-to-day life.

– Priti M. Patel, MD

Keeping Our Hobbies and Our Work/ Family...is There Enough Hours in the Day?

When recently interviewed about my directorship in a specialty program, I was asked "what are your hobbies?" I had to stop and truly think - what do I do as a hobby? Certainly, childrearing doesn't seem quite hobby-like. For me, and true for many, my health had taken a backseat to nearly every activity. Patient calls? Covering for a colleague? Mystery reader at school? Balloon arch for a birthday party? All prioritized. Even if this meant staying up until late into the night to sacrifice sleep to do so. What I realized, however, is no one would make me get back to things I once loved, but rather this was my responsibility. Hobbies for me now include things that have dual meaning and purpose. To take on running and yoga as a hobby enables me to maintain my health and mental balance. Continuing to be a co-leader in Girl Scouts allows me to spend time with my eldest while camping or hiking (once two of my favorite hobbies) and sewing costumes for my children allows to me to feed the creative that once was vibrant. The musician in me is enveloped in listening to music while writing cath reports. As our children age, time for hobbies will change but at stages where their social lives are more active than a college freshman, time is precious. That being said, time for self-care in many forms is vital to being a good physician and good mother. Without allowing some freedom for wandering thoughts or physical activity to take priority, we lose that which made us unique and without carving out that protected time to do so leaves us wishing. For me, this can only be accomplished by literally scheduling time for myself on my calendar.

- Holly D. Bauser-Heaton, MD

Looking to the Future as a Woman Interventionist in Training - My Expectations of Work-Life Balance

As physicians and women in the field of interventional cardiology, we aim for excellence by trying to be "able, affable, and available" – with available often being the easiest to achieve.

We need to have the ability to juggle everyone's expectations - often leaving our own self-care to last on the checklist. There is also an unspoken expectation that as a woman you must be a "diamond-in-the-rough" able to outlast the training and come out the other side with your personality and relationships intact. So - where does that leave work-life balance? Work-life balance means something different for everyone. For me, it means meeting life and work expectations and being satisfied with the division of your time - without feeling you could or should do more. There has been a societal pivot towards awareness that maintaining work-life balance means less burn out and more satisfaction. It is important; therefore, we actively seek to maintain our external identities. Finding purpose in life and work and how best to harmonize the two is an individual process but my expectation is that it can be achieved with support and a mutual acceptance that the choice of where to draw the line between work

Scan the QR code above for detailed survey results

Director of Echocardiography / Associate or Full Professor of Clinical Pediatrics

The Keck School of Medicine (KSOM) of the University of Southern California (USC) and Children's Hospital Los Angeles (CHLA) in the Department of Pediatrics in the Division of Cardiology, are actively seeking a full-time faculty member at the level of Associate or Full Professor of Clinical Pediatrics. This position will fulfil the role of Director of Echocardiography at Children's Hospital Los Angeles, and Keck School of Medicine. Applicants must have an M.D. or equivalent degree and have demonstrated scholarly, clinical, and teaching capabilities. Candidates must be board certified or board eligible in Pediatric Cardiology by the American Board of Pediatrics and be eligible for medical licensure in the State of California. Candidates will have already completed an ACGME accredited 3-year fellowship in Pediatric Cardiology, with additional relevant training and leadership experience in Pediatric Echocardiography.

Candidates should be academically committed to the field of pediatric echocardiography, and non-invasive imaging in general. Demonstrated leadership excellence in this field is an essential requirement, with attributed prior development of the facilities staffing and other resources of a highly functioning echocardiography service at a tertiary care pediatric and congenital heart disease deemed to be pre-eminent. Relevant additional areas of experience include 3D/4D echocardiography, exercise echocardiography, and quantitative methods of cardiac evaluation (including deformation/strain analysis and evaluation of diastolic function). Candidates should also demonstrate a rigorous academic focus—ideally with a history of research/investiga¬tional pursuits and publications in peer-reviewed journals—and a clear intention and well-defined plan for continued research, publication, and teaching throughout their careers.

Since the successful candidate will assume attending physician responsibilities for echocardiographic service delivery on inpatients and outpatients, as well as developing the research capabilities of the echocardiography laboratory at CHLA/KSOM, clinical expertise in the performance and interpretation of pediatric transthoracic, transesophageal, and/or fetal echocardiography is essential.

This position will also include general clinical cardiology duties including rotation in the regular inpatient service, as well as outpatient cardiology responsibilities. The preferred candidate should therefore have a broad exposure to, and familiarity with the assessment of newborns, infants, and children in an inpatient setting, and also be familiar with general pediatric cardiology outpatient concerns, including post-operative follow up following surgical repair of congenital heart disease. Provision of didactic teaching to fellows, residents, medical students, and nurses is expected. Night and weekend on-call responsibilities will be shared on a rotating basis with other faculty members in the division.

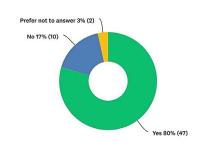
When extending an offer of employment, the University of Southern California considers factors such as (but not limited to) the scope and responsibilities of the position, the candidate's work experience, education/training, key skills, internal peer equity, federal, state, and local laws, contractual stipulations, grant funding, as well as external market and organizational considerations.

Children's Hospital Los Angeles is ranked among the top hospitals in the nation for pediatric cardiac care on the U.S. News & World Report Best Children's Hospitals List. We are a recognized leader in state-of-the-art evaluation, diagnosis, and treatment for all forms of heart disease. As a core component of the hospital's Heart Institute, our division offers expertise in all major areas of cardiology, with nationally recognized subspecialists in all major areas. Children are referred to us for care from across the western United States and Pacific Rim countries.

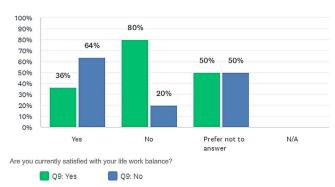
Academic appointment through USC Keck School of Medicine is available at a level appropriate to training and experience. USC is an equal opportunity, affirmative action employer. CHLA and USC greatly values diversity and is committed to building a vibrant and culturally diverse community of faculty that best reflects the patients and families that we serve. Individuals from underrepresented groups in medicine are especially encouraged to apply.

https://facultypositions.usc.edu/FAS/application/position?postingId=REQ20131352

If interested, please apply using the link above. For further inquiries, please contact:


Dr. Paul Kantor, <u>pakantor@chla.usc.edu</u> or Nailea Corado, <u>ncorado@chla.usc.edu</u>

WORK-LIFE BALANCE


Do you feel you need to work harder than your male colleagues to accomplish the same at work?

Answered: 59 Skipped: 0

Work life balance and Equity

Do you feel you need to work harder than your male colleagues to accomplish the same at work?

FIGURE 3

and life commitments should be that of the individual. As I am about make the transition from fellow to attending, it seems to me with more female interventionalists and more awareness that this balance matters, things are changing. It may never be perfect but enough to ensure that as women interventionalists we can not only enjoy what we do, but thrive in all aspects of our lives.

- Natalie Soszyn, MBBS

Words of Wisdom

Don't let anyone tell you can't do it all! Because you absolutely can!!! In almost every culture, women have been the cornerstone of the family. Men went out to hunt and women did EVERYTHING else! Recent research has shown that women are better multitaskers than men.³ So, believe in yourself and believe you can do it all! As a mother of three and the director of the Cath lab, this has not been easy. But at the end of the day when all is said and done, I am happy to report that I would do it all again. I will share a moment that put it all together for me. One day I was very upset about something that happened at home and was sobbing and saying maybe if I had spent more time at home this wouldn't have happened. My son who was only 11 years old at that time came to my rescue and said: "Mom, you are a great Mom! Do you think that all the stay-at-home Mom's spend all the time with their kids, no they don't. When you are home, you're home and you show us how much you care in every way you can. So, get up and be proud!" Your kids will learn from your actions. They will grow up to be strong, motivated, witty, kind, independent and accountable and you will grow up fulfilled with your achievements both at home and at work.

- Howaida El-Said, MD

Dear Younger Self,

You will be happy to know that in the end, you were ultimately able to find career satisfaction, equality in pay and raise two beautiful children while continuing to work in a demanding male dominated field. This certainly came at a price personally and professionally, with lessons learned and mistakes made all along the way. You will be told that women "can't do it all," that if we choose to become mothers we will have to sacrifice either family or professional growth. Yes, you will have to make decisions and hard choices, but remember that the only person who has to be happy with the road you take is you. You will need help raising your children, but this will not mean that you will love them any less or that they will somehow feel neglected if you are not there every hour of every day. Remember that no one can actually have it all... not even men. For they will also sacrifice family time for work, but somehow society will accept that more. Stay at home moms will criticize you for not being home, but just being home is not a guarantee that you will always be present. If you are happy and fulfilled, you will be able to help others become happy and fulfilled, including your family. When you are at work, focus on work and when you are home, focus on home. You must create boundaries and protect them fiercely. You will find this challenging.

It will be a roller coaster until they get to school and then illnesses, school pick-ups and after school activities will cause every day to feel like a mad but glorious dash. You will need to exercise patience and grace for you, your partner, and your children. Accepting that you will not make it to everything, but that your family will ALWAYS come first. Your children and spouse will know that your love is constant even if your presence is not. As your children age, you will develop amazing relationships with them and demonstrate to them that it is, in fact, possible to work and have a family. They will tell you they understand you needed help and how much they loved their nanny. You will find your people. You need to find your people. Those men, and especially women, support you, think what you do is amazing and are willing to help in times of need. You may in return, gladly provide free medical advice and endless carpools on the weekends when you are free. Always remember that home is the one place where you cannot be replaced. Remind yourself to enjoy the crazy struggle and to be present whatever you are doing.

You will spend your days at work keeping your head down and doing good work, worrying more about taking care of your patients than recognition. Understand that ultimately recognition will come. You will endure bias that you must look within yourself to overcome. Not with emotion, but with sheer facts. Remember this when you are justifying your pay increase to equal that of your male colleagues. It will be shocking to you that discrimination remains present, but you will find colleagues who support you and together you will be successful in getting equal treatment for equal work. But it will take time, patience, and persistence. You will realize you really can do whatever you set your mind to. But, you must, surround yourself with people who share your vision and want to help you get there, and then return the gift by mentoring other women to walk in your same footsteps. Accept that no one, not even you, can do it all alone, but you can still do it fantastically.

Signed, Your Older and Much Wiser Self

– Vivian Dimas, MD

WORK-LIFE BALANCE

Acknowledgments

Thank you to all the women interventional cardiologists around the world that participated in the survey and made this article even more informative and special.

References

- Shanafelt TD, Boone S, Tan L, et al. Burnout and Satisfaction with Work-Life Balance Among US Physicians Relative to the General US Population. Arch Intern Med. 2012;172(18):1377– 1385. doi:10.1001/archinternmed.2012.3199
- Tait D. Shanafelt, Colin P. West, Christine Sinsky, Mickey Trockel, Michael Tutty, Hanhan Wang, Lindsey E. Carlasare, Lotte N. Dyrbye, Changes in Burnout and Satisfaction With Work-Life Integration in Physicians and the General US Working Population Between 2011 and 2020, Mayo Clinic Proceedings, Volume 97, Issue 3, 2022, Pages 491-506, ISSN 0025-6196, https://doi.org/10.1016/j.mayocp.2021.11.021.
- Stoet, G., O'Connor, D.B., Conner, M. and Laws, K.R., 2013. Are women better than men at multi-tasking?. BMC Psychology, 1(1), pp.1-10

PRITI M. PATEL, MD, FSCAI

Associate Professor of Clinical Pediatrics Director, Pediatric and Adult Congenital Cardiac Catheterization Laboratories Department of Pediatrics University of Illinois College of Medicine at Peoria Peoria, IL, USA

NATALIE SOSZYN, MBBS

Advanced Congenital Interventional Cardiology Fellow Children's Hospital Colorado Aurora, CO, USA

VIVIAN DIMAS, MD, MBA

Director, Pediatric Cardiac Catheterization Medical Director, Adult Congenital Heart Disease Medical City Children's Hospital/Medical City Heart Hospital Dallas, TX, USA

JENNY E. ZABLAH, MD

Congenital Interventional Cardiologist Colorado University, School of Medicine Anschutz Medical Campus Denver, CO, USA Jenny.Zablah@childrenscolorado.org

Publish

- Written by fellows, doctors and their team
- Case studies, articles, research findings, reviews and human interest
- No publication fees
- Print and electronic
- Published within 3-6 months of submission
- Fellows: turn PowerPoint decks into articles

HOWAIDA EL-SAID, MD, PHD

Professor Pediatric Cardiology University of California San Diego Director of Cardiac Cath Lab Rady Children's Hospital Adult Congenital Heart Disease Certified San Diego, CA, USA

HOLLY D. BAUSER-HEATON,

Associate Professor of Pediatrics Children's Healthcare of Atlanta,

Division of Cardiology Atlanta, GA, USA

MD, PHD

Duke Pediatric Cardiology Transplant Physician

Duke Pediatric Cardiology and Duke University School of Medicine are seeking an early to mid-career pediatric cardiac transplant/heart failure physician to join our transplant/heart failure team. Candidates should be academically motivated, BE/BC in pediatric cardiology and have advanced training and/or experience in pediatric transplant and heart failure. This position will focus on care in both the in-patient and outpatient settings for the cardiology transplant/ heart failure service. The ideal candidate would be motivated to work within a high functioning transplant/heart failure service seeking to provide innovative care to a rapidly expanding patient population. Applicants with research interests/ funding are also invited to apply.

The Duke Pediatric and Adult Congenital Heart Center is one of the highest volume pediatric heart programs in the United States. Ranked #7 in 2022 by U.S. News and World Reports for Pediatric Cardiology and Heart Surgery (USNWR pediatric-rankings: cardiology-and-heart-surgery), and recognized for exceptional outcomes (STS Public Reporting Outcomes), the program has experienced exponential growth over the past 4 years. The current Pediatric Heart Failure/Transplant team consists of 2 Transplant Cardiologists, 2 Nurse Practitioners, a dedicated Pediatric Heart Transplant Coordinator, 4 Congenital Cardiac Surgeons, and additional allied healthcare team members. In 2022 the program performed 14 pediatric heart transplants including numerous innovative approaches such as the first pediatric "donation after circulatory death (DCD)" heart transplant performed in the United States, the first ever partial heart transplant and the first ever heart-thymus co-transplant.

Visit Duke Division of Pediatric Cardiology at https://pediatrics.duke.edu/divisions/cardiology

The greater Triangle area of **Raleigh**, **Durham**, **and Chapel Hill**, has a population of more than two million residents that offers diverse opportunity. From urban loft living to suburban and rural family homes with acreage – there are options for every lifestyle. The Research Triangle Park (RTP) lies in the midst of the area, a globally prominent research and development center conceived around the main academic centers – Duke University, University of North Carolina, and North Carolina State University. This trio of leading universities, combined with the RTP, has helped create a region that is culturally diverse, economically resilient, and nationally recognized as a wonderful place to live. To learn more about the Duke and Greater Triangle communities, visit <u>https://www.discoverdurham.com/</u>

Interested candidates should submit CV and Letter of Interest via <u>https://pdc.dukehealth.org/physician-jobs</u>

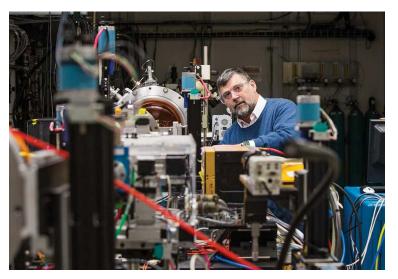
With a deep commitment to attracting and retaining a diverse staff, Duke University will honor your experiences, perspectives and unique identity. Together, our community strives to create and maintain working, learning and care environments that are inclusive, equitable and welcoming.

Duke is an Affirmative Action/Equal Opportunity Employer committed to providing employment without regard to an individual's age, color, disability, gender, gender expression, gender identity, genetic information, national origin, race, religion, sex, sexual orientation, or veteran status.

Contact Info: Sherrod Basnight, Physician Recruiter <u>sherrod.basnight@duke.edu</u>

MEDICAL NEWS

Illinois Tech Professors' Paper Challenging Classical View of Muscle Contraction Could Lead to New Cardiac Treatments


Professor Thomas Irving and Research Assistant Professor Weikang Ma, working with a team from the University of Washington, found that motor proteins have to be activated before muscles can contract

CHICAGO—February 1, 2023—In a newly published paper, a team including two professors from Illinois Institute of Technology (Illinois Tech) have reported a new mechanism for muscle contraction that could play a significant role in developing treatments for inherited cardiac conditions.

Illinois Tech Research Assistant Professor Weikang Ma and Professor of Biology and Physics Thomas Irving, working in collaboration with Professor of Bioengineering Michael Regnier's group at the University of Washington, challenged the conventional understanding of muscle contraction, which held that the relationship between the thin and thick filaments that comprise muscle tissue was relatively straightforward. Rather than myosin proteins that make up thick filaments automatically finding their way to thin filaments when their targets were activated, the researchers discovered that myosin motor proteins have to be turned on before they can generate force and contract the muscle.

By better understanding this relationship between the thick and thin filaments in regards to muscle contraction, genetic conditions that have gone untreated until now may eventually have medical remedies. The diseases can range from dilated cardiomyopathy where the heart muscle is too weak and ultimately struggles to pump blood throughout the body—to hypertrophic cardiomyopathy, where the muscle works too hard and eventually becomes thickened, potentially reducing blood flow.

Part of what has allowed the team to make its case is the information that it gathered using a state-of-the-art technique called small-angle X-ray diffraction, a technique that Irving has been perfecting as part of the Biophysics Collaborative Access Team (BioCAT) in partnership with groups such as the National Institutes of Health and Argonne National Laboratory since the 1990s. This technique allows researchers to gather data in a way that Irving says is more accurate than other techniques currently being used.

Professor of Biology and Physics, Thomas Irving, in the lab

"In electron microscopy, you can't see motion, it's a static measurement. You can't do a time result," says Irving. "In our case, we can take movies; we can do a physiological experiment and see these molecules moving in real physiological time. That's what's so special about it."

Their paper, "Structural OFF/ON transitions of myosin in relaxed porcine myocardium predict calcium-activated force," was published January 23, 2023, in the Proceedings of the National Academy of Sciences.

V

- Written by doctors and their team
- Case studies, articles, research findings
- Submit on your schedule
- Print and electronic
- Published within 3 months of submission
- No fees

- In print and electronic monthly issue
- On our website
- In our monthly email blast
- No cost for CCT to create the ad
- Multiple sizes available

www.CongenitalCardiologyToday.com

MEDICAL NEWS

The Berlin Heart Active Driver Trial Update from ACTION and Berlin Heart, Inc.

Cincinnati, OH – March 15, 2023 – A leading pediatric heart failure organization ACTION (the Advanced Cardiac Therapies Improving Outcomes Network in Cincinnati, OH), in conjunction with Berlin Heart, Inc. (The Woodlands, TX), launched the first prospective FDA regulated device trial using a pediatric ventricular assist device (VAD) registry in November 2022.

The Berlin Heart ACTIVE Driver Trial is sponsored by Berlin Heart, Inc. ACTION is serving as the clinical research organization (CRO), with the ACTION registry serving as the repository of the clinical trial data.

The goal of the trial is to gain FDA approval of the new ACTIVE driving unit, which will replace the approved IKUS driving unit that powers the commercially available EXCOR Pediatric Ventricular Assist Device system. Of the 58 Children's Hospitals who are member sites in the ACTION Network, 17 have been chosen to participate in the trial.

Historically, there has been a paucity of pediatric device and drug trials due to cost, patient volume and variability in heart failure etiology. ACTION is collaborating with industry, patients and families and regulatory agencies to develop novel ways to bring innovation to the bedside and improve the treatment and outcomes for the pediatric population with heart disease.

The Berlin Heart ACTIVE Driver study will allow young heart failure patients implanted with a Berlin Heart VAD to rehabilitate and become stronger while awaiting heart transplantation. The currently approved IKUS driver is large, heavy and cumbersome. The new Active Driver is smaller and allows patients much greater mobility and quality of life.

As of February 3, 2023:

- Eleven of 17 sites have been activated to enroll patients.
- Seven of 17 sites have enrolled patients.
- Ten of 40 patients have enrolled in the study.

"We are thrilled to partner with Berlin Heart on this important study," said Angela Lorts, MD, MBA and Co-Executive Director of ACTION. "We are using the ACTION registry data as 'real world data' for both prospective clinical trials and to apply for expanded FDA indications for pediatrics. This study and others will continue our important work in making a difference to improve outcomes for patients with heart failure, especially children."

To learn more about the Berlin Heart ACTIVE Driver Trial, click HERE. To learn more about ACTION and how you could join its efforts, please visit <u>www.actionlearningnetwork.org</u>.

JUNE

10-11

WeCan Fetal Heart Screen 2023 Virtual https://stollery-cardiac.wixsite.com/stollery-cardiacsym

23-26

ASE 2023 – Foundations and the Future of Cardiovascular Ultrasound National Harbor, MD, USA https://www.asescientificsessions.org/ conferences/csi-frankfurt

JULY

28-29

CICT 2023 – CICT Controversies in Interventional Cardiovascular Therapies Pasadena, CA, USA https://cictsymposium.com/

AUGUST-SEPTEMBER

25-27

3rd Annual PICS Fellows & Early Career Course Washington, DC, USA <u>kimberly_ray@chdinterventions.org</u>

27-01

8th World Congress of Pediatric Cardiology and Cardiac Surgery Washington, DC, USA http://wcpccs2023.org/

CORPORATE OFFICE

PO Box 52316 Sarasota, FL 34232 USA

CORPORATE TEAM

PUBLISHER & EDITOR-IN-CHIEF Kate Baldwin kate.f.baldwin@gmail.com

FOUNDER & SENIOR EDITOR Tony Carlson tcarlsonmd@gmail.com CO-FOUNDER & MEDICAL EDITOR John W. Moore, MD, MPH jwmmoore1950@gmail.com

> STAFF EDITOR & WRITER Virginia Dematatis

EDITOR-IN-CHIEF EMERITUS Richard Koulbanis STAFF EDITOR Loraine Watts

EDITORIAL BOARD

Aimee K. Armstrong, MD Jacek Bialkowski, MD Anthony C. Chang, MD, MBA Howaida El-Said, MD, PhD Ziyad M. Hijazi, MD, MPH John Lamberti, MD Tarek S. Momenah, MBBS, DCH John W. Moore, MD, MPH Shakeel A. Qureshi, MD P. Syamasundar Rao, MD Carlos E. Ruiz, MD, PhD Hideshi Tomita, MD Sara M. Trucco, MD Gil Wernovsky, MD

OFFICIAL NEWS & INFORMATION PARTNER OF

Pediatric and Congenital Interventional Cardiovascular Society

Statements or opinions expressed in Congenital Cardiology Today reflect the views of the authors and sponsors and are not necessarily the views of Congenital Cardiology Today. © 2023 by Congenital Cardiology Today LLC ISSN 1554-7787 print. ISSN 1554-0499 electronic. Published monthly. All rights reserved.