Tricuspid Atresia with Common Arterial Truncus: A Rare Association

By NN Kalis, MBChB (Stell), FCP (SA), MMed (Paed); Arulselvam Vimalarani, MBBS, DNB (Paed); FNB (Paed Card); Saud Rashid Al Amer, MD, DCH, SSC-P; SF-Ped (Card)

Abstract

The coexistence of both Tricuspid Valve Atresia and Common Arterial Tuncus is extremely rare. We report a case of antenatal diagnosis of this anomaly which was confirmed postnatally and discuss the management options.

Key Words

Tricuspid Valve Atresia and Common Arterial Truncus (CAT).

Introduction

Tricuspid Valve Atresia (TA) and Common Arterial Trunk (CAT) are rare anomalies, accounting for only 2.5%, and 0.7% of all Congenital Heart Diseases (CHD), respectively.¹, ² The coexistence of both anomalies is extremely rare. We report a case of antenatal diagnosis of this anomaly, which was confirmed postnatally, and the management options.

Case Report

An 18-year-old primigravida mother was referred for fetal echocardiography at 26 weeks of gestation. There were no antenatal risk factors. There was a history of consanguineous marriage. Fetal echocardiography showed a single ventricle with atretic tricuspid valve and small right ventricle. Only single semilunar valve and no crossing of great vessels seen. A 3.2 kg male infant was delivered at 38 weeks of gestation by emergency Caesarean section (indication fetal distress) with Apgar of 2/10 and 9/10. On examination his blood pressure was normal in all four limbs and TcSats was 96% in room air. Cardiac examination revealed single second heart sound and grade 2/6 ejection systolic murmur.
NOW ENROLLING:

Harmony™ Transcatheter Pulmonary Valve (TPV) Clinical Study

WHAT IS THE MEDTRONIC HARMONY TPV CLINICAL STUDY?
The study is a multi-center prospective, non-randomized, interventional pre-market study in the United States. The purpose of the study is to evaluate the safety and effectiveness of the Harmony TPV system in patients who have congenital heart disease and are clinically indicated for pulmonary valve replacement. The trial will involve up to 40 subjects implanted at 10 study centers.

WHO CAN PARTICIPATE?
Patients who have pulmonary regurgitation:
- Severe pulmonary regurgitation by echocardiography, or
- Pulmonary regurgitant fraction ≥ 30% by cardiac magnetic resonance imaging

Patients who have a clinical indication for surgical placement of a RV-PA conduit or prosthetic pulmonary valve:
- Subject is symptomatic secondary to pulmonary insufficiency (e.g., exercise intolerance, fluid overload), or
- Right ventricular end diastolic volume index ≥ 150 mL/m², or
- Subject has RVEDV:LVEDV Ratio ≥ 2.0

HOW CAN I LEARN MORE ABOUT THE HARMONY TPV CLINICAL STUDY?
For additional information about the program, please contact Medtronic at:
RS.HarmonyTPVClinicalStudy@medtronic.com

CAUTION: Investigational Device. Limited by Federal Law (USA) to Investigational Use.
grade 2/6 ejection systolic murmur heard over left sternal border. His chest x-ray showed cardiomegaly. Echocardiography (Figure 1 and 2) confirmed: the antenatal diagnosis of situs solitus, bilateral superior vena cavae, normal drainage of inferior vena cava to right atrium, normal pulmonary venous drainage to left atrium, restrictive Atrial Septal Defect (ASD) with right-to-left shunt, Tricuspid Valve Atresia (TA) with small right ventricle (RV), non-restrictive Ventricular Septal Defect, common arterial trunk (CAT) giving rise to small main pulmonary artery (PA) branching into right and left branch pulmonary arteries with left aortic arch and no truncal valve regurgitation (Collet and Edwards Type I).

The child was asymptomatic initially, and was started on diuretics. On follow-up, there was poor weight gain. The child was prepared for predicted univentricular pathway. At 2 months of age, the child underwent banding of the main pulmonary artery and systemic to pulmonary artery shunt. The post-operative course was complicated, and the infant died Day 5 post-operatively from proven Gram negative sepsis. Permission for postmortem examination was denied.

Discussion

The combination of TA with CAT is extremely rare, and constitutes only 0.01% to 0.02% of Congenital Heart Disease cases. The first reported case was by Tandon in 1974. Until 1991, only eight cases were reported and all of them died due to cardiac failure before reaching three months of age. Since then, an additional nine cases have been reported. The first successful palliation by disconnecting the pulmonary arteries from the CAT, and placement of a systemic-to-pulmonary artery shunt was reported by Sreeram et al.

Only five patients are reported to have undergone successful surgical palliation. Malec et al published a three-stage procedure consisting of initial disconnection of the PA from the trunk, atrial septectomy and systemic-pulmonary shunt, a hemi-Fontan procedure at 27 months of age, and a final fenestrated Fontan completion at 51 months. An excellent result was achieved with follow-up to 8 years of age.

Numata et al undertook a different approach: banding the main pulmonary artery at one month of age, creating a modified Blalock–Taussig shunt (BT shunt) at 6 months, a bidirectional Glenn (BDG) shunt at five-years of age and Fontan completion at six-years of age. Despite several further operations in the interim to control the pulmonary blood flow, including a repeat BT shunt and reconstruction of the pulmonary arteries at three-years of age. The end results were satisfactory, but the authors concluded that a better approach would have been to perform primary separation of the pulmonary arteries from the aorta and installation of a systemic to pulmonary shunt.

In 2014, Roland et al described another approach, disconnection of PA from CAT and central RV to PA shunt (Sano) with atrial septectomy at 12 days of age. The child was readmitted with respiratory distress and saturation of 50% at 2 months of age. Cardiac catheterization showed an unobstructed, but small calibre Sano shunt. Hence, a redo modified BT shunt was done. At 6 months of age the BDG was done.
Lopez et al\(^6\) reported a case of TA and CAT with partial anomalous pulmonary venous drainage of the left upper pulmonary vein into the retro aortic innominate vein. The neonate underwent right modified BT shunt, atrial septectomy and disconnection of the PAs from CAT on Day 1 of Life (DOL). At 5 months of age, a second stage BDG and PA shunt, atrial septectomy and disconnection of the PAs from CAT were performed. Interact Cardiovasc Thorac Surg 2004; 3:161–2.

Deletion of chromosome 22q11 is well-documented in conotruncal anomalies. Alva et al reported this rare anomaly with chromosome 22q11 deletion proven by Fluorescent in situ hybridization (FISH).\(^7\)

Conclusion

TA and CAT is an extreme rarity, and only 17 cases (Table 1) are reported in the literature. An accurate diagnosis of this unique form of Congenital Heart Defect is mandatory for an early treatment. Early palliation to prevent cardiac failure with primary separation of the PAs from the CAT, and placement of a BT shunt would be an optimal first-stage palliation to prevent early mortality.

References

“The combination of TA with CAT is extremely rare, and constitutes only 0.01% to 0.02% of Congenital Heart Disease. The first reported case was by Tandon in 1974. Until 1991, only eight cases were reported and all of them died due to cardiac failure before reaching three months of age. Since then, an additional nine cases have been reported. The first successful palliation by disconnecting the pulmonary arteries from the CAT, and placement of a systemic-to-pulmonary artery shunt was reported by Sreeram et al.”

Table 1. Literature Review of TA and CAT Reported Cases

<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>Tandon et al(^3)</td>
<td>Died</td>
</tr>
<tr>
<td>1974</td>
<td>Bharati et al(^8)</td>
<td>Died</td>
</tr>
<tr>
<td>1975</td>
<td>Dick et al(^9)</td>
<td>Died</td>
</tr>
<tr>
<td>1977</td>
<td>Anderson et al(^10)</td>
<td>Died</td>
</tr>
<tr>
<td>1981</td>
<td>Sharma et al(^11)</td>
<td>Died</td>
</tr>
<tr>
<td>1987</td>
<td>Areias JC et al(^12)</td>
<td>Died</td>
</tr>
<tr>
<td>1990</td>
<td>Diogenes et al(^13)</td>
<td>Died</td>
</tr>
<tr>
<td>1991</td>
<td>Rao et al(^14)</td>
<td>Died</td>
</tr>
<tr>
<td>1991</td>
<td>Sharma et al(^11)</td>
<td>PA disconnection & Ao to PA shunt. No further follow-up</td>
</tr>
<tr>
<td>1999</td>
<td>Wang et al(^15)</td>
<td>Died</td>
</tr>
<tr>
<td>2000</td>
<td>Malec et al(^2)</td>
<td>Fontan completion</td>
</tr>
<tr>
<td>2003</td>
<td>Alva et al(^7)</td>
<td>No follow-up</td>
</tr>
<tr>
<td>2004</td>
<td>Numuta et al(^1)</td>
<td>Fontan completion</td>
</tr>
<tr>
<td>2008</td>
<td>Ramirez et al(^16)</td>
<td>PA disconnection & Ao to PA shunt, but died after 24 hours</td>
</tr>
<tr>
<td>2010</td>
<td>Tonnig et al(^17)</td>
<td>Prenatal diagnosis – pregnancy termination at 22 weeks</td>
</tr>
<tr>
<td>2014</td>
<td>Rolden et al(^5)</td>
<td>Fontan completion</td>
</tr>
<tr>
<td>2015</td>
<td>Lopez et al(^8)</td>
<td>Stage 1-PA disconnection & Ao to PA shunt, Stage 2-Bidirectional Glenn shunt, On follow up for Stage 3 Fontan completion</td>
</tr>
</tbody>
</table>

PA – Pulmonary artery; AO - Aorta

Corresponding Author

Prof. NN Kalis, MBChB (Stell), FCP (SA), MMed (Paed)
The Mohammed bin Khalifa bin Salman Al-Khalifa Cardiac Center
Bahrain Defense Force Hospital
PO Box 28743
Kingdom of Bahrain
Tel: + (973) 766500; Fax: + (973) 651112
nnkalis@batelco.com.bh

Vimalarani Arulselvam, MBBS, DNB (Paed), FNB (Paed Card)
The Mohammed bin Khalifa bin Salman Al-Khalifa Cardiac Center
Bahrain Defense Forces Hospital
Kingdom of Bahrain

Saud Rashid Al Amer, MD, DCH, SSC-P, SF-Ped (Card)
The Mohammed bin Khalifa bin Salman Al-Khalifa Cardiac Center
Bahrain Defense Forces Hospital
Kingdom of Bahrain

Congenital Cardiac Intensivist

The Heart Center (THC) at Nationwide Children’s Hospital, the primary pediatric teaching facility for The Ohio State University in Columbus Ohio, is recruiting an attending physician, at any academic level, for the Cardiothoracic Intensive Care Unit (CTICU). This individual would join a group of seven multi-background academic cardiac intensivists and eight dedicated nurse practitioners devoted to the CTICU providing 24/7 in house coverage.

Our current independently-managed free-standing CTICU is a 20 bed unit with approximately 800 total admissions per year (medical and surgical) and an average daily census of 12. Candidates must have completed fellowship training in pediatric cardiac anesthesia, critical care and/or cardiology that includes advanced cardiac intensive care training. Preference will be given to those with experience and are boarded in pediatric cardiology.

THC embraces a culture of patient safety and quality, transparency, translational/outcome research, education, cost-containment and public health awareness. These create ample participation and leadership opportunities for the candidate’s professional growth. THC is comprehensive with services including an active hybrid palliation center, a comprehensive single ventricle program, thoracic organ transplantation program, blood conservation strategies, and cardiac mechanical support team. The CTICU is supported by world-class and innovative interventional cardiology, cardiology imaging, cardiothoracic surgery and adult congenital heart experts. Current annual clinical metrics for THC includes: over 500 cardiothoracic surgeries, over 700 cardiac catheterizations and EP procedures, and over 13,000 cardiology outpatient visits. We have a pediatric and pediatric/adult combined cardiology fellowship programs. We participate in numerous multicenter clinical trials and quality initiatives including the JCCHD QI Collaborative. We are directly linked to our Center for Cardiovascular and Pulmonary Research which has an NIH T-32 training grant.

Interested candidates are encouraged to submit their curriculum vitae to:

Janet Simsic, MD
Director of the Cardiothoracic Intensive Care Unit,
Nationwide Children’s Hospital, T2296
700 Children’s Drive
Columbus, OH 43205

or janet.simsic@nationwidechildrens.org

Upcoming Medical Meetings

33rd Annual Echocardiography in Pediatric & Adult Congenital Heart Disease Symposium
Oct. 8-11, 2017; Rochester, MN USA
ccveducation.mayo.edu/marketing/echocardiography-in-pediatric-and-adult-congenital-heart-disease-case-studies-2#overview

LAA - How to Close the Left Atrial Appendage
Nov. 17-18, 2017; Frankfurt, Germany
www.csi-congress.org/laa-workshop.php?go=0

CSI Africa
Dec. 1-2; 2017; Nairobi, Kenya
www.csi-congress.org/csi-africa.php?go=0

Device Therapies for Heart Failure
Dec. 15-16, 2017; Berlin, Germany
www.csi-congress.org/dhf.php?go=0

NeoPREP - An Intensive Review & Update of Neonatal/Perinatal Medicine
Jan. 20-26, 2018; Atlanta, GA USA
shop.aap.org/live-activities

CSI Asia Pacific
Jan. 31 - Feb. 3, 2018; Ho Chi Minh City, Vietnam
www.csi-congress.org/csi-asia-pacific.php

ACC 67th Annual Scientific Session & Expo
Mar. 10-12, 2018; Orlando, FL USA
https://accscientificsession.acc.org/Information-Pages/future-meetings

SCAI 2018 Scientific Sessions
Apr. 25-28, 2018; San Diego, CA USA
www.scai.org/SCAI2018

CSI, Imaging & Innovation
Jun. 27-3; Frankfurt, Germany
www.csi-congress.org/index.php

Barth Syndrome (ICD-10: E78.71)

Symptoms:
- Cardiomyopathy, Neutropenia, Muscle Weakness,
- Exercise Intolerance, Growth Delay, Cardiolipin Abnormalities

www.barthsyndrome.org
NeoHeart 2017 - Abstract Title: Transcatheter Echocardiographic-Guided Closure of Patent Ductus Arteriosus in Extremely Premature Newborns: Early Results and Mid-Term Follow-up

By Evan Zahn, MD; Dan Peck, MD; Ruchira Garg, MD; Marion McRae, NP; Phillip Nevin, RN; Kaylan Basaker; Alistair Phillips, MD; Charles Simmons, MD

Objectives: The goal of this study was to describe early and mid-term outcomes of extremely premature newborns (EPN) who underwent transcatheter echocardiographic-guided Patent Ductus Arteriosus (PDA) closure.

Background: The treatment of hemodynamically significant PDA in EPN is controversial. Treatment with cyclooxygenase inhibitors induces ductal constriction and closure in some EPN; however, this therapy is only successful in an estimated 50%-60% of cases and carries a risk of pharmacologic complications such as renal insufficiency and bleeding. Surgical ligation of PDA in EPN confers significant risk of procedural morbidity, including Post-Ligation Syndrome (PLS) and may adversely affect long-term outcomes. This has led to an era of conservative expectant management of these EPN, despite the obvious ill effects PDA can have on their clinical course and outcomes.

Methods: A retrospective review of all EPN who underwent transcatheter echocardiographic guided closure of PDA at our institution between 3/13 and 10/16 was performed. Pre-procedural clinical variables, imaging data, procedural elements and clinical follow-up data were collected to evaluate acute, early- and mid-term results. Post-Ligation Syndrome (PLS) was defined using previously published parameters. Patients were followed at pre-specified intervals and prospectively collected data was reviewed retrospectively.

Results: Transcatheter closure was attempted in 36 EPN (median gestational age/birth weight = 27 (24-33) weeks /848 (480-2480)g; procedural age/weight = 22 (5-80) days/1153 (755-2380)g and successful in 33/36 (92%). The three procedural failures were all related to the potential development of left pulmonary artery stenosis caused by the device and all devices were removed uneventfully during the implant procedure. Complications included two instances of device malposition, resolved with device repositioning (no long-term sequelae), and one instance of left pulmonary artery stenosis, requiring a left pulmonary artery stent at a later date.

There were no procedural deaths, residual PDA or device embolization. While most patients exhibited a transient decrease in LV systolic function, there were no clinical cases of PLS. One baby who required a complex device repositioning (noted above) had an increase in ventilatory requirements for 24 hours and prolonged diminished LV function believed secondary to the complexity of the procedure. Survival to discharge was 97% (35/36) with a single late death (3 months post-procedure) unrelated to the procedure.

At a median time from the procedure of 2.1 years all patients were alive and well, with no patients exhibiting residual PDA flow or the development of pulmonary artery stenosis or aortic coarctation of the aorta.

Conclusions: This newly described technique can be performed safely with a high success rate and minimal procedural morbidity in EPN. Early and mid-term follow-up is encouraging. Future efforts should be directed towards developing specific devices for this unique population and determining if this new treatment option results in better long-term outcomes than traditional medical and surgical therapies.

Funding Acknowledgement (if applicable): Evan Zahn: Consultant, St. Jude Medical; Research grant, Edwards Life Sciences.

All other authors: No disclosures

“This newly described technique can be performed safely with a high success rate and minimal procedural morbidity in EPN. Early and mid-term follow-up is encouraging. Future efforts should be directed towards developing specific devices for this unique population and determining if this new treatment option results in better long-term outcomes than traditional medical and surgical therapies.”

Abstract Corresponding Author

Evan Zahn, MD
Director, Guerin Family Congenital Heart
Cedars-Sinai Heart Institute
127 S. San Vicente Blvd.
AHSP-Suite A3600
Los Angeles, CA 90048
Tel: 310-423-1153
evan.zahn@cshs.org

Abstract Co-Authors

Dan Peck, MD; Ruchira Garg, MD; Marion McRae, NP; Phillip Nevin, RN; Kaylan Basaker; Alistair Phillips, MD; Charles Simmons, MD

CCT
Pediatric Cardiology Division Chief

The Department of Pediatrics at The Ohio State University and The Heart Center at Nationwide Children’s Hospital is seeking a Division Chief of Pediatric Cardiology. The Chief will oversee all missions of the Division including accountability for clinical excellence and timely access to care, strategic growth, quality improvement, education, and original, innovative research. Applicants for this position must be highly motivated with a distinguished academic record, reputation as an effective and motivated leader, and ability to mentor. A track record of proven leadership experience and skill in career development, research, operations, communication, conflict resolution, time management, and ability to work with departmental and hospital personnel is necessary. The Chief must support the diversity and equity values of our organization. Academic rank will be at the associate or full professor level.

The Chief will be directly accountable to the Department Chair and the Chief Medical Officer at Nationwide Children’s Hospital. The chief will work closely with the Co-Directors of The Heart Center at Nationwide Children’s Hospital to develop and execute the strategic plan for the center. The Chief will partner with the Director of the Center for Cardiovascular Research to advance the Heart Center’s research strategic plan which includes basic laboratory science, clinical and translational components. The Section Chief of Pediatric Cardiology, along with medical directors of each of the cardiology sub-specialties (outpatient, in-patient services, cardiothoracic intensive care, adult congenital heart, catheterization and intervention, transplant/heart failure, non-invasive imaging), will report directly to the Division Chief. The Division Chief will work closely with the Vice President of The Heart Center on personnel, budgetary, operational issues. The Division Chief will be expected to work closely with nursing administration within The Heart Center.

The Division of Pediatric Cardiology has 33 outstanding pediatric cardiologists with categorical and subspecialty cardiology fellows in adult congenital heart disease, advanced imaging, heart failure/transplantation, and interventional catheterization. The division has an NIH T-32 training grant with The Ohio State University along with various masters training opportunities. The Heart Center performs approximately 500 cardiac surgical cases, 700 catheterization/interventional cases, and 15,000 outpatient encounters per year. The world-class surgical and medical teams work closely to develop innovative hybrid approaches to patient care, and we are committed to caring for the patient with congenital heart disease from fetus through adulthood. Some of our highlighted programs include a hybrid approach to congenital heart disease, our regional partnerships, seamless transition to our COACH (ACHD) program, comprehensive single ventricle care team, and cardiogenetics research. We have a 20 bed dedicated cardiothoracic intensive care, 24 bed stepdown unit, two state of the art hybrid catheterization laboratories, and two hybrid operating rooms along with an extensive off-campus network of regional outpatient care sites.

Nationwide Children’s Hospital is a perennial USNWR Honor Roll hospital. It employs a medical staff of over 1,100 and more than 11,000 employees, providing state-of-the-art pediatric care for 1.2 million patient visits annually. Nationwide Children’s Hospital has 68 facilities extending out across Ohio and beyond. In addition, the Research Institute at Nationwide Children’s is one of the top NIH-funded freestanding pediatric research facilities in the United States. Columbus, the Ohio state capital and the 15th largest city in the United States, is a thriving, diverse, technologically sophisticated city with a population of 1,800,000. Quality of life is exceptional and cost of living is affordable.

Please submit nominations to:

John Barnard, MD, Department Chair,
700 Children’s Drive, T6D A6421
Columbus OH 43205
or john.barnard@nationwidechildrens.org

The Ohio State University is an Equal Opportunity, Affirmative Action Employer. Women, minorities, veterans, and individuals with disabilities are encouraged to apply.
Purpose: The ADO II AS Study is a single-arm, prospective, multicenter, nonrandomized, open-label study to characterize the safety and effectiveness of the ADO II AS device in patients with a patent ductus arteriosus (PDA). Subjects will be implanted with the ADO II AS device using a transcatheter femoral vessel approach under fluoroscopic and echocardiographic guidance.

To account for subject dropout, up to 50 subjects will be enrolled in this clinical investigation. The clinical investigation will be conducted at up to 10 centers in the United States.

Subjects participating in this clinical investigation will be followed for 3 years. The expected duration of enrollment is 18 months. The total duration of the clinical investigation is expected to be 4.5 years.

Condition: Patent Ductus Arteriosus

Intervention: Device: ADO II AS (PDA closure)

Study Type: Interventional

Study Design: Intervention Model: Single Group Assignment

Intervention Model Description: ADO II AS device

Masking: None (Open Label)

Primary Purpose: Treatment

Primary Outcome Measures:
- Safety Endpoint: The rate of major complications after an attempted ADO II AS device implant [Time Frame: Through 180 days] The rate of major complications after an attempted ADO II AS device implant.
- Effectiveness Endpoint: The rate of effective closure of the ductus arteriosus among subjects with a successful ADO II AS implant as assessed by the presence of either a Grade 0 or Grade 1 shunt by transthoracic echocardiography. [Time Frame: At the six-month follow-up] The rate of effective closure of the ductus arteriosus among subjects with a successful ADO II AS implant as assessed by the presence of either a Grade 0 or Grade 1 shunt by transthoracic echocardiography.

Secondary Outcome Measures: Obstruction in left pulmonary artery or aorta. The rate of significant obstruction of the pulmonary artery or aorta [Time Frame: Through 6-month follow-up visit] The rate of significant obstruction of the pulmonary artery or aorta.

Estimated Enrollment: 50

Anticipated Study Start Date: June 2017

Estimated Study Completion Date: June 2021

Estimated Primary Completion Date: December 2018 (Final data collection date for primary outcome measure)

Arms: Experimental: PDA closure

Assigned Interventions:
- Device: ADO II AS (PDA closure)
- Closure of PDA using Amplatzer Duct Occluder II Additional Sizes (ADO II AS)

Ages Eligible for Study: Child, Adult, Senior

Sexes Eligible for Study: All

Accepts Healthy Volunteers: No

Inclusion Criteria:
- Diagnosis of a PDA
- PDA ≤ 4mm in diameter
- PDA ≥ 3mm in length
- Subject (or legally authorized representative) is willing to comply with all pre-procedure, post-procedure, and follow-up testing requirements and provides consent to participate in the clinical study

Exclusion Criteria:
- Weight < 700 grams at time of the procedure
- Gestational age < 24 weeks at birth
- Age <3 days at time of procedure
- Coarctation of the aorta
- Intracardiac thrombus
- Active infection requiring treatment at the time of implant
- Female subjects of childbearing potential are either pregnant or desire to become pregnant within six months post implant
- Other disease process likely to limit survival to less than six (6) months
- Participating in another study for an investigational drug and/or device that may clinically interfere with this study's endpoints

Contacts:
- Andrew C Campbell; 651-756-5538; acampbell2@sjm.com
- Ashish Oza; 818-493-3648; aoza@sjm.com

Sponsors and Collaborators: St. Jude Medical

Principal Investigator: Evan Zahn, MD

Cedars-Sinai Medical Center

Study First Received: February 14, 2017

Last Updated: June 8, 2017

Plan to Share IPD: No

Studies a U.S. FDA-regulated Drug Product: No

Studies a U.S. FDA-regulated Device Product: Yes

Device Product Not Approved or Cleared by U.S. FDA: Yes

Pediatric Postmarket Surveillance of a Device Product: No

Additional relevant MeSH terms:
- Ductus Arteriosus, Patent
- Heart Defects, Congenital
- Cardiovascular Abnormalities
- Cardiovascular Diseases
- Heart Diseases
- Congenital Abnormalities

ClinicalTrials.gov processed this record on September 07, 2017. For the most up-to-date information, please see www.clinicaltrials.gov
Abbott Initiates Ground-Breaking U.S. Pivotal Study of AMPLATZER Device to Correct Common Congenital Heart Defect in Newborns

On August 30th, 2017 – Abbott announced it has initiated a U.S. pivotal clinical study evaluating the safety and effectiveness of a modified version of its AMPLATZER™ device designed to correct a common Congenital Heart Defect (CHD) that occurs in approximately 80,000, pre-term infants in the U.S. each year.

Patent Ductus Arteriosus, or PDA, is a life-threatening vascular pathway, or duct, in the heart that remains open due to failure of the fetal duct to close after birth. The duct, which serves as a bridge between blood vessels and is located between the main two arteries exiting the heart, is present in normally developing fetuses and typically seals itself after birth. In some cases, primarily in premature babies, the PDA fails to spontaneously close, which can result in serious difficulty breathing and an inability to feed -- two critical tasks for newborn babies.

Abbott is developing the AMPLATZER Duct Occluder II Additional Sizes (ADO II AS) device, which is already approved for use in Europe, with the goal of providing physicians with a nonsurgical treatment option for closing the PDA defect in newborns and pre-term infants. The wire mesh device is placed non-surgically through a catheter inserted through the leg and guided through vessels to the heart, where it is placed to seal the duct. The new device is similar to the AMPLATZER Duct Occluder II product, available in larger sizes, and it builds upon more than 15 years of clinical success for AMPLATZER Occluder therapies.

"Patent Ductus Arteriosus is one of the most common heart defects, accounting for 5% to 10% of all congenital heart disease," said Evan Zahn, MD, Director of the Guerin Family Pediatric Cardiology at the Cedars-Sinai Heart Institute in Los Angeles, and principal investigator for the study. "Surgery has many risks in this delicate population and a minimally invasive approach is desperately needed."

Pharmaceuticals can sometimes be used to promote closure of the duct, but are less effective in pre-term infants. For pre-term infants not responsive to pharmaceuticals, current treatment options are limited to surgery, which is not always possible, or to leave the duct open, which is not optimal for young infants. When the duct remains open, blood is redirected away from the body to the lungs and heart. Left untreated, the condition can lead to serious complications, including heart and kidney failure, damage to the intestines, bleeding in the brain, altered nutrition and growth, and ultimately, becomes a risk factor for chronic lung disease and death.

The study will enroll approximately 50 patients at up to 10 centers across the United States. The first seven patients were enrolled at Le Bonheur Children’s Hospital in Memphis, Tenn., and treated by Shyam Sathanandam, MD, Associate Professor at the University of Tennessee.

If successful, the U.S. trial results will support Abbott's application for U.S. Food and Drug Administration (FDA) approval for pediatric use in the U.S..

“This modified AMPLATZER device has been designed with our youngest and tiniest patients in mind,” said Michael Dale, Vice President of Abbott's structural heart business. "These smaller sizes may offer physicians greater flexibility to, hopefully, help these infants live healthy, normal lives."

The ADO II AS trial is a single-arm, prospective, multicenter, non-randomized clinical investigation designed to characterize the safety and effectiveness of the ADO II AS device in patients with a Patent Ductus Arteriosus who are more than three days old. Co-primary endpoints are the rate of major complications through 180 days after an attempted implant, and the rate of effective closure of the ductus arteriosus among patients with a successful implant at six months. The secondary endpoint is the rate of significant obstruction of the pulmonary artery or aorta through six months.

For more information about the ADO II AS study, please visit: https://clinicaltrials.gov/ct2/show/NCT03055858.

Abbott is committed to helping people live their best possible life through the power of health. For more than 125 years, they have brought new products and technologies to the world -- in nutrition, diagnostics, medical devices and branded generic pharmaceuticals -- that create more possibilities for more people at all stages of life. Today, 94,000 employees are working to help people live not just longer, but better, in the more than 150 countries they serve.

For more information go to: www.abbott.com, on Facebook at: www.facebook.com/Abbott and on Twitter @AbbottNews and @AbbottGlobal.

Testing to See Whether Bone Marrow-Derived Cells Will Benefit Children with the Congenital Heart Defect

In a first-in-children randomized clinical study, the University of Maryland School of Medicine (UMSOM) and the Interdisciplinary Stem Cell Institute (ISCI) at the University of Miami Miller School of Medicine have begun testing to see whether bone marrow-derived cells will benefit children with the Congenital Heart Defect Hypoplastic Left Heart Syndrome (HLHS).

“Allogeneic Human Mesenchymal Stem Cell Injection in Patients with Hypoplastic Left Heart Syndrome: An Open Label Pilot Study” is a Phase I/IIb clinical trial to test the therapeutic effects of the allogeneic mesenchymal stem cells (MSCs) in children...
with HLHS. ISCI will be providing the MSCs and clinical site for the trial is at UMSOM.

Even with extensive surgical treatments, HLHS babies still do not have optimal outcomes. The researchers hope the cells will increase the babies’ chances of survival as HLHS limits the heart’s ability to pump blood from the heart to the body because of poor right ventricle function.

“The premise of this clinical trial is to boost or regenerate the right ventricle, the only ventricle in these babies, to make it pump as strongly as a normal left ventricle,” says lead researcher Sunjay Kaushal, MD, PhD, Associate Professor of Surgery, University of Maryland School of Medicine and director, pediatric cardiac surgery, University of Maryland Medical Center. “We are hoping this therapy will be a game-changer for these patients.”

This is the first HLHS research in the United States to use stem cells known as allogeneic mesenchymal stem cells (MSC). The allogeneic nature of the MSCs makes it possible for stem cells from one bone marrow donor to provide all the stem cells for this study. In adult patients, MSCs in the heart have been shown to reduce scar tissue, reduce inflammation, cause new small vessels to grow, and stimulate the heart to regenerate itself by improving ejection fraction by 7%, causing heart muscle cells and cardiac stem cells to grow.

This trial is intended to address the remaining obstacles to long-term cardiac function in HLHS patients. We propose that a stem cell-based therapy for these patients may prevent right heart failure and, therefore, improve survival outcomes and reduce the need for transplantation. The MSCs are directly injected into the right ventricular myocardium during the 2nd out of three standard operations (Glenn procedure/Bidirectional Cavopulmonary Anastomosis)—when the baby is about four months of age.

To date, our three enrolled patients are all showing early signs of safety and feasibility. This trial will be testing a total of 30 patients, after proving that this stem cell therapy works in strengthening the heart function. If you would like more information, and have a patient who might want to consider participation in this landmark trial, please contact: Dr. Sunjay Kaushal at 410-328-5842 or by email: SKaushal@som.umaryland.edu.

Siemens Healthineers Receives FDA Clearance for TrueFusion Structural Heart Disease Feature

The Food and Drug Administration (FDA) has cleared TrueFusion, a new cardiovascular application from Siemens Healthineers that integrates ultrasound and angiography images to guide cardiac teams when administering treatment for structural heart disease. Available on the new Release 5.0 of the ACUSON SC2000 cardiovascular ultrasound system, TrueFusion is designed to maximize not only interventionalcardiology procedures, but also routine diagnosis and follow-up of patients with structural heart disease. With cardiovascular imaging applications such as TrueFusion, as well as laboratory and point-of-care diagnostics solutions in addition to therapy guidance tools, Information Technology (IT), and services, Siemens Healthineers innovates to improve outcomes and reduce costs in cardiovascular care.

General Pediatric Cardiologist

The Heart Center at Nationwide Children’s Hospital (NCH) is recruiting a cardiologist, at the assistant or associate professor level, to attend on our Cardiac Step-Down Unit and participate in our robust outpatient/satellite outreach program. This individual would join a team of dedicated academic cardiologists, nurse practitioners, specialty nurses and allied healthcare specialists who provide care to patients in our 24-bed cardiac step-down unit and outpatient clinic system. Candidates must be board-eligible or certified in pediatric cardiology. The successful applicant would work closely with the team members of our cardiac step-down unit, outpatient services, and national referral partners to ensure effective care delivery and safe transition of care for our patients. Our step-down unit is vigorously engaged in family centered care and quality improvement initiatives focused on the institutional pillars of Treat Me Well, Navigate My Care, Do Not Harm Me, Heal Me, and Treat Me with Respect.

Nationwide Children’s Hospital is the primary pediatric teaching facility for The Ohio State University in Columbus Ohio. THC, a top USNWR program, embraces a culture of patient safety and quality, transparency, engagement in translational/outcomes research, excellence in education, value-based care and community health awareness. This creates ample opportunities for professional growth and leadership development. THC is comprehensive with services that include a single ventricle program, neurodevelopmental and cardiogenetic services, thoracic organ transplantation program, fetal cardiac intervention, blood conservation strategies, as well as a comprehensive outreach network. Annual clinical metrics for THC include: 500 cardiothoracic surgeries, 700 cardiac interventional and EP procedures, and 15,000 cardiology outpatient encounters. We have a well-established pediatric cardiology fellowship with advanced training opportunities in ACHD, interventional catheterization, and non-invasive imaging along with options to pursue master’s degrees in statistics/study design, healthcare administration and medical education at OSU. We participate in numerous multicenter clinical trials and quality initiatives including the ACC QNet and JCCDQI collaboratives. We are directly linked to our Center for Cardiovascular Research which has an NIH T-32 training grant.

Interested candidates are encouraged to submit their curriculum vitae to:
Rob Gajarski, MD, Cardiology Section Chief at: robert.gajarski@nationwidechildrens.org

The Ohio State University is an Equal Opportunity, Affirmative Action Employer. Women, minorities, veterans, and individuals with disabilities are encouraged to apply.
Medical Center.

“With the availability of the TrueFusion cardiovascular application, Siemens Healthineers provides our customers with an invaluable tool to aid in the diagnosis, treatment, and follow-up of patients with structural heart disease,” said David Pacitti, President and Head of Siemens Healthineers North America.

Footnote 1 TrueFusion represents a workflow consisting of syngo TrueFusion (syngo X Workplace) and TrueFusion echo-fluoro guidance (ACUSON SC2000 Ultrasound System, PRIME edition).

Fused imaging for structural heart procedures

Treatment options for structural heart disease are evolving rapidly. Increasingly, these minimally invasive procedures involve multimodality imaging and multidisciplinary clinical teams. To reliably diagnose structural heart disease and perform these complex interventions, clinical teams need detailed, real-time imaging information – specifically, real-time soft tissue and blood flow information from echocardiography as well as 2D imaging information from fluoroscopy – to be visible in one view for common orientation.

Addressing the need for fused images, the new TrueFusion application sends anatomical and functional markers as well as valve models from the ACUSON SC2000’s True Volume transesophageal echocardiography (TEE) transducer to an Artis with PURE angiography system, overlaying ultrasound information with live fluoroscopy images to navigate structural heart procedures. By directly and seamlessly integrating co-registration of Artis fluoro and ACUSON SC2000 echo into the workflow via machine learning-based probe detection and automated registration updates, TrueFusion enables clinical teams to identify soft tissue-based structures that are provided directly from the integrated ultrasound system. With TrueFusion, not only can echocardiographers and interventionists better communicate and achieve more intuitive anatomical orientation during challenging procedures, but clinical teams potentially can reduce contrast usage and procedure time as well as patient and clinician X-ray exposure.

Rodrigues comes to Florida Medical Center from a 3- hospital non-profit health system in Southeastern Massachusetts. She has been both a cardiac catheterization and electrophysiology manager. Rodrigues has a proven track record in the successful development of new programs and has played an integral part in the development of the structural heart program at one of her previous hospitals which now includes TAVR, BAV, mitral clip, and watchman procedures. Prior to her career in nursing, she held positions that allowed her to gain extensive business experience which has helped her in the managerial positions in healthcare that she has held.

Rodrigues has a Bachelor of Science Degree in Food and Natural Resources from the University of Massachusetts and an Associate of Science Degree from Bristol Community College.

Florida Medical Center, a campus of North Shore is a 459-bed acute care hospital founded in 1973. Located at 5000 West Oakland Park Boulevard in Fort Lauderdale, Fla., Florida Medical Center is the home of The Heart Institute of Florida, the hospital’s center for cardiac services which offers a Hybrid Operating Suite, Heart Valve Clinic, Chest Pain Center and the Aortic Disease Institute of Florida.

The hospital is one of the only Comprehensive Stroke Centers in Western Broward County as designated by the Florida Agency for Healthcare Administration, allowing physicians and staff to offer a higher level of stroke care to its patients. Florida Medical Center’s Surgical Weight Loss Center is also a designated Bariatric Center of Excellence by the American Society for Metabolic and Bariatric Surgery.

Florida Medical Center offers a broad range of medical and surgical services including: neurology and neurosurgery, a comprehensive orthopedics program, urology, psychiatry, gynecology, diagnostic imaging, pain center, wound care, diabetes education and 24-hour emergency services. Florida Medical Center has also recently opened a dedicated Senior Care Unit and Senior ER to accommodate the needs of the aging community.

Florida Medical Center is the first hospital in Florida to achieve full Chest Pain Center with Primary PCI Resuscitation Accreditation from the Society of Cardiovascular Patient Care. Florida Medical Center received the following awards from Healthgrades, the leading online resource that helps consumers search, compare and connect with physicians and hospitals: ranked among the top 10% in the nation for cardiology services and coronary interventional procedures in 2014, five-star recipient for Coronary Intervention Procedures for three years in a row (2013-2015), five-star recipient for coronary interventional procedures for three years in a row (2013-2015), and five-star recipient for the treatment of heart failure (2014-2015 and 2017).

Florida Medical Center has also received recognition from the American Heart Association’s Get With The Guidelines Gold Plus Performance Achievement Award in stroke care and the target stroke honor roll, the highest distinction awarded for...
Firmware Update to Address Cybersecurity Vulnerabilities Identified in Abbott’s (formerly St. Jude Medical’s) Implantable Cardiac Pacemakers: FDA Safety Communication

Date Issued: August 29, 2017

Audience:
- Patients with a radio frequency (RF)-enabled St. Jude Medical implantable pacemaker
- Caregivers of patients with an RF-enabled St. Jude Medical implantable cardiac pacemaker
- Cardiologists, electrophysiologists, cardiothoracic surgeons, and primary care physicians treating patients with heart failure or heart rhythm problems using an RF-enabled St. Jude Medical implantable cardiac pacemaker

Medical Specialties:
Cardiac Electrophysiology, Cardiology, Cardiothoracic Surgery, Heart Failure

Devices:
Abbott's (formerly St. Jude Medical's) implantable cardiac pacemakers, including cardiac resynchronization therapy pacemaker (CRT-P) devices, provide pacing for slow or irregular heart rhythms. These devices are implanted under the skin in the upper chest area and have connecting insulated wires called "leads" that go into the heart. A patient may need an implantable cardiac pacemaker if their heartbeat is too slow (bradycardia) or needs resynchronization to treat heart failure.

The devices addressed in this communication are the following St. Jude Medical pacemaker and CRT-P devices:
- Accent
- Anthem
- Accent MRI
- Accent ST
- Assurity
- Allure

This communication does NOT apply to any implantable cardiac defibrillators (ICDs) or to cardiac resynchronization ICDs (CRT-Ds).

Purpose:
On August 23, 2017, the FDA approved a firmware update that is now available and is intended as a recall, specifically a corrective action, to reduce the risk of patient harm due to potential exploitation of cybersecurity vulnerabilities for certain Abbott (formerly St. Jude Medical) pacemakers. "Firmware" is a specific type of software embedded in the hardware of a medical device (e.g., a component in the pacemaker). For the purposes of this safety communication, cybersecurity focuses on protecting patients' medical devices and their associated computers, networks, programs, and data from unintended or unauthorized access, change, or destruction.

The FDA recommends that patients and their health care providers discuss the risks and benefits of the cybersecurity vulnerabilities and the associated firmware update designed to address such vulnerabilities at their next regularly scheduled visit.

Summary of Problem and Scope:
Many medical devices - including St. Jude Medical's implantable cardiac pacemakers - contain configurable embedded computer systems that can be vulnerable to cybersecurity intrusions and exploits. As medical devices become increasingly interconnected via the Internet, hospital networks, other medical devices, and smartphones, there is an increased risk of exploitation of cybersecurity vulnerabilities, some of which could affect how a medical device operates.

The FDA has reviewed information concerning potential cybersecurity vulnerabilities associated with St. Jude Medical's RF-enabled implantable cardiac pacemakers and has confirmed that these vulnerabilities, if exploited, could allow an unauthorized user (i.e., someone other than the patient's physician) to access a patient's device using commercially available equipment. This access could be used to modify programming commands to the implanted pacemaker, which could result in patient harm from rapid battery depletion or administration of inappropriate pacing.

There are no known reports of patient harm related to the cybersecurity vulnerabilities in the 465,000 (US) implanted devices impacted.

To address these cybersecurity vulnerabilities and improve patient safety, St. Jude Medical has developed and validated this firmware update as a corrective action (recall) for all of their RF-enabled pacemaker devices, including cardiac resynchronization pacemakers. The FDA has approved St. Jude Medical's firmware update to ensure that it addresses these cybersecurity vulnerabilities, and reduces the risk of exploitation and subsequent patient harm.

After installing this update, any device attempting to communicate with the implanted pacemaker must provide authorization to do so. The Merlin Programmer and Merlin@home Transmitter will provide such authorization.

The firmware update will be available beginning August 29, 2017. Pacemakers manufactured beginning August 28, 2017 will have this update pre-loaded in the device and will not need the update.

Firmware Update Details:
The firmware update requires an in-person patient visit with a health care provider – it cannot be done from home via Merlin.net. The update process will take approximately three minutes to complete. During this time, the device will operate in backup mode (pacing at 67 beats per minute), and essential, life-sustaining

CONGENITAL CARDIOLOGY TODAY

CALL FOR CASES AND OTHER ORIGINAL ARTICLES

Do you have interesting research results, observations, human interest stories, reports of meetings, etc. to share? Submit your manuscript to: RichardK@CCT.bz
features will remain available. At the completion of the update, the device will return to its pre-update settings.

As with any firmware update, there is a very low risk of an update malfunction. Based on St. Jude Medical’s previous firmware update experience, installing the updated firmware could potentially result in the following malfunctions (including the rate of occurrence previously observed):

- Reloading of previous firmware version due to incomplete update (0.161%),
- Loss of currently programmed device settings (0.023%),
- Loss of diagnostic data (none reported), or
- Complete loss of device functionality (0.003%).

Recommendations for Health Care Providers:

- The FDA and Abbott do NOT recommend prophylactic removal and replacement of affected devices.
- Discuss the risks and benefits of the cybersecurity vulnerabilities and associated firmware update with your patients at the next regularly scheduled visit. As part of this discussion, it is important to consider each patient’s circumstances, such as pacemaker dependence, age of the device, and patient preference, and provide them with Abbott’s Patient Guide.
- Determine if the update is appropriate for the given patient based on the potential benefits and risks. If deemed appropriate, install the firmware update following the instructions on the programmer.
- For pacing dependent patients, consider performing the cybersecurity firmware update in a facility where temporary pacing and pacemaker generator can be readily provided.
- Print or digitally store the programmed device settings and the diagnostic data in case of loss during the update.
- After the update, confirm that the device maintains its functionality, is not in backup mode, and that the programmed parameters have not changed.
- The firmware update process is described in Abbott’s Dear Doctor Letter issued on August 28, 2017.
- Contact your Abbott representative, or Abbott’s customer technical support hotline at 18007223774 if you have any questions about the firmware update.

Recommendations for Patients and Caregivers:

- Consult with your physician(s) for determining when you should receive the update and if you have any questions or concerns about the vulnerabilities of the update. Your ongoing medical management should be based on your own medical history and clinical condition.
- Visit www.sjm.com/cyberupdate, or contact Abbott’s hotline at 1-800-722-3774 for additional information, or if you have any questions or issues regarding your St. Jude Medical implantable cardiac pacemaker.

FDA Actions:

The FDA will continue to assess new information concerning the cybersecurity of Abbott’s implantable cardiac devices and the Merlin@home Transmitter, and will keep the public informed if the FDA’s recommendations change.

Looking for Career Opportunities in Congenital/Structural Heart Disease (CHD)?

Go to: www.CongenitalCardiologyToday.com/Recruit/Recruit.html
The FDA reminds patients, patient caregivers, and health care providers that any medical device connected to a communications network (e.g., Wi-Fi, public or home Internet) may have cybersecurity vulnerabilities that could be exploited by unauthorized users. However, the increased use of wireless technology and software in medical devices can also often offer safer, more efficient, convenient, and timely health care delivery.

The FDA will continue its work with manufacturers and health care delivery organizations, as well as security researchers and other government agencies—to develop and implement solutions to address cybersecurity issues throughout a device’s total product lifecycle. The FDA takes reports of vulnerabilities in medical devices very seriously and has issued recommendations to manufacturers for continued monitoring, reporting, and remediation of medical device cybersecurity vulnerabilities.

Reporting Problems to the FDA
Prompt reporting of adverse events can help the FDA identify and better understand the risks related to the use of medical devices. If you suspect or experience a problem with these devices, we encourage you to file a voluntary report through MedWatch, the FDA Safety Information and Adverse Event Reporting program. Health care personnel employed by facilities that are subject to FDA’s user facility reporting requirements should follow the reporting procedures established by their facilities.

Additional Resources:
- Abbott Press Release
- Abbott Patient Communication
- Abbott Physician Communication
- Department of Homeland Security ICS-CERT Advisory
- Cybersecurity Vulnerabilities Identified in St. Jude Medical’s Implantable Cardiac Devices and Merlin@home Transmitter: FDA Safety Communication (January 9, 2017).
- Postmarket Management of Cybersecurity in Medical Devices Final Guidance (12/28/16).

CONGENITAL CARDIOLOGY TODAY

Can Help You Recruit:
- Pediatric Cardiologists
- Pediatric Interventional Cardiologist
- Adult Cardiologist focused on CHD
- Congenital/Structural Heart Surgeons
- Echocardiographers
- EPs
- Pediatric Transplant Cardiologist

Your Recruitment Advertising Includes:
- Full color Recruitment ad in the issue(s)
- Your recruitment listing in the email blast for the issue(s) with a hot link
- 3-Step Special Recruitment Opportunity Website Section in three (3) areas of the website
- We can create your recruitment ad at no extra charge!

For More Information Contact:
Tony Carlson | +1.301.279.2005 | tcarlsonmd@gmail.com

The Division of Cardiac Imaging, Department of Cardiology at Boston Children’s Hospital is actively recruiting a faculty physician to join our world-renowned cardiac imaging team. Candidates must be Board Certified or Eligible in Pediatric Cardiology. Candidates at all career stages who possess strong clinical, research, and teaching abilities are encouraged to apply. Valued clinical skills include echocardiography, cardiac magnetic resonance, and computed tomography. Faculty will be eligible for appointment at Harvard Medical School.

The Division of Cardiac Imaging at Boston Children’s Hospital is one of the largest imaging programs for children and adults with congenital heart disease in the United States. Its activities include transthoracic echocardiography, transesophageal echocardiography, fetal echocardiography, cardiac magnetic resonance, and cardiac computed tomography. A high proportion of cases have complex disease and undergo image-guided interventions. Equipment includes state-of-the-art imaging, reviewing, and reporting technology. Resources for conducting clinical, basic science, and translational research are abundant throughout the Department. Academic advancement through research and teaching activities is strongly encouraged and supported. We have a highly-regarded senior fellowship program in cardiac imaging and train 2-3 senior fellows each year.

Interested candidates should forward their CV to:

Andrew J. Powell, M.D.
Chief, Division of Cardiac Imaging
Department of Cardiology
Boston Children’s Hospital
300 Longwood Avenue
Boston, MA 02115

Email: andrew.powell@cardio.chboston.org

Boston Children’s Hospital is an equal opportunity employer.
The first place for children
The Department of Pediatrics at Southern Illinois University School of Medicine is recruiting a fourth pediatric cardiologist at the Assistant Professor level. Faculty will join a rapidly expanding cardiology program at our Children's Hospital, an 80 bed CHA affiliated pediatric referral center for Central and Southern Illinois with a referral base of almost 2 million. The current program includes state-of-the-art noninvasive imaging in TTE, TEE, fetal echocardiogram, and advanced MRI imaging. We have developed a highly successful collaborative clinical and research program with a nationally recognized pediatric cardiology center.

Opportunities exist to participate in resident and medical student education and receive an advanced degree in medical education.

Candidates must be board eligible in Pediatrics and Pediatric Cardiology. Candidates must be board eligible in Pediatrics and Pediatric Cardiology.

For additional information, please contact:
Ramzi Nicolas, MD
phone: 217-545-9706, or email: rnicolas@siumed.edu.

SIU is an EO/AA employer.
CP STENT
FOR TREATMENT OF
COARCTATION OF THE AORTA

INDICATIONS FOR USE:
The Covered CP Stent™ is indicated for use in the treatment of native and/or recurrent coarctation of the aorta involving the aortic isthmus or first segment of the descending aorta where there is adequate size and patency of at least one femoral artery associated with one or more of the following: Acute or chronic wall injury; Nearly atretic descending aorta of 3 mm or less in diameter; A non-compliant stenotic aortic segment found on pre-stent balloon dilation; A genetic or congenital syndrome associated with aortic wall weakening or ascending aortic aneurysm.

WARNINGS / PRECAUTIONS:
Coarctation of the aorta involving the aortic isthmus or first segment of the descending aorta should be confirmed by diagnostic imaging. The CP stent has not been evaluated in patients weighing less than 20kg. As with any type of implant, infection secondary to contamination of the stent may lead to aortitis, or abscess. Overstretching of the artery may result in rupture or aneurysm formation. Crimping the stent on a balloon catheter smaller than 12mm may cause damage to the stent. Excessive handling and manipulation of the covering while crimping the stent may cause the covering to tear off of the stent. This device is intended for single use only. Do not resterilize and/or reuse it, as this can potentially result in compromised device performance and increased risk of cross-contamination.

CONTRAINDICATIONS:
Patients too small to allow safe delivery of the stent without compromise to the systemic artery used for delivery. Unfavorable aortic anatomy that does not dilate with high pressure balloon angioplasty. Curved vasculature. Occlusion or obstruction of systemic artery precluding delivery of the stent. Clinical or biological signs of infection. Active endocarditis. Known allergy to aspirin, other antiplatelet agents, or heparin. Pregnancy.

Refer to the Instructions for Use for complete indications, relevant warnings, precautions, complications, and contraindications.