Effect of Different Modes of Chest Physiotherapy on Arterial Blood Gases Following Paediatric Cardiac Surgery

By Md. Abu Shaphe, PT, PhD; Rajeev Aggrawal, MPT, (PhD); Mohd Abid Geelani, MCH; Jamal Ali Moiz, MPT

Abstract

Lung complications after pediatric heart surgery frequently include atelectasis and pneumonia. Physiotherapy has an important role in the treatment of these complications. This study was designed to compare changes in Oxygenation index (PaO₂/FiO₂) and PaCO₂ caused by different modes of chest physiotherapy in ventilated pediatric patients after cardiac surgery.

Methods

Pediatric patients who were ventilated after cardiac surgery were randomly assigned to one of three modes of CPT (chest physiotherapy) based on clinical evidence of tracheobronchial secretion retention. Oxygenation index and PaCO₂ were measured before CPT and fifteen minutes after completion of the CPT sessions up to three days after surgery.

Results

All three modes of CPT resulted in improvement of oxygenation of infants. No modes of CPT were demonstrated superior to the others in terms of improvements in Oxygenation index or PaCO₂.
SIZING UP THE FUTURE AND TARGETING A BRIGHTER TOMORROW

PTS® SIZING BALLOONS FOR ACCURATE MEASUREMENT OF SELECTING THE APPROPRIATELY Sized OCCLUDER DEVICE

X™ LINE HOLDING THE LINE
BRAIDED INNER TUBING AND RADIOPAQUE MARKER BANDS FOR MAINTAINING STRENGTH & TRACKABILITY

B. Braun Interventional Systems Inc.
824 Twelfth Avenue
Bethlehem, PA 18018
Tel: 1-877-VENA CAV (836-2228)
Fax: 610-266-3982

www.bisusa.org
The present data suggest all three CPT modes were found to be effective in improving oxygenation of infants following cardiac surgeries in ICU while on ventilation. However, none of the three CPT modes were superior over other.

Introduction

Children with congenital heart disease often develop changes in respiratory mechanics. In addition, heart surgery associated with cardiopulmonary bypass (CPB) also leads to a number of respiratory complications. Thus, CPT in the post-operative period has as main objectives lung re-expansion, airway clearance, and prevention of complications such as pneumonia.

CPT plays an important role in the prevention and management of lung complications. A large number of studies have reported the effects of CPT on this patient population. Authors have used a variety of strategies, techniques, and duration of treatment. Moreover, different approaches and combinations have been employed without specific scientific rationale. The purpose of this study was to evaluate the impact of three different CPT modes on Oxygenation index and PaCO$_2$ in ventilated pediatric patients after cardiac surgery.

Methods

The study was performed in the G. B. Pant Hospital New Delhi, India. It included 45 ventilated pediatric patients, age range 12-72 months (mean 36.75 months), following open heart surgery. Informed consent was obtained from the parents of the subjects.

Inclusion Criteria

- Children up to 6 years of age.
- Had undergone corrective cardiac surgery.
- Subjects while on mechanical ventilation.
- Clinical evidence of tracheobronchial secretion retention.

Exclusion Criteria

- Cardiovascular unstable subjects.
- Neurologically ill patients.

Patients returning to the cardiac intensive care unit were ventilated using an endotracheal tube attached to a servo ventilator, with humidification at 34º C from a respiratory humidifier. Based on the Inclusion and Exclusion Criteria, eligible patients were randomly assigned to one of three CPT modes designated Groups A, B, and C using a chit method.

- Group A: (n=15) Percussion and Suctioning.
- Group B: (n=15) Vibration, Bag squeezing and Suctioning.
- Group C: (n=15) Percussion, Vibration, Position change, Bag squeezing and Suctioning.

Design

The study was a prospective randomized clinical trial designed to compare effectiveness of three different modes of CPT in pediatric patients after cardiac surgery.

Procedure

The type of operation and the oxygen requirement (FiO$_2$) were recorded. Oxygenation Index and PaCO$_2$ were measured before CPT and at the end of the first post-operative day, 15 minutes after the last CPT session. This procedure was repeated on the second and third post-operative days. The day and time of extubation was recorded. Evening values of Oxygenation Index and PaCO$_2$ were measured fifteen minutes after completion of CPT in order to avoid the immediate effects of CPT.

Chest physiotherapy techniques were employed as follows:

- Percussion consisted of striking the chest with a Bennet face mask at a rate of 10-120 beats per minute.

Vibration was given when the patient was on exhalation phase.

Bag squeezing was performed with a 500ml bag with 3 tidal volumes.

Position changes consisted of moving the patient from left to right side down.
Figure 4. Comparison of PaCO₂ post-CPT of 1st day evening and post-CPT of 2nd day evening among groups.

Data Analysis

Data analysis was performed using software package SPSS for windows version “15” repeated measure analysis of variance (ANOVA) was used to examine changes in all dependent variables. Significance level set for this study was set at (p<0.05).

Results

Group Analysis

Group A: (Percussion and Suctioning): On day 1st pre- and post-CPT, PaO₂/FiO₂ changes were non-significant (p=0.975). On day 2 in the morning, PaO₂/FiO₂ fall to 221.68 ± 26.15 from 236.07 ± 26.55 which was statically significant (p=0.007). On day 2 in the evening, there was significant improvement in PaO₂/FiO₂ following percussion and suctioning (p=0.008). PaCO₂ on day 1 pre- and post-CPT changes were non significant (p=0.199). On day 2 in the morning, PaCO₂ fall to 37.67±2.47 from 38.51±3.90 which was non-significant (p=0.238). On day 2 in the evening PaCO₂ improved towards normal (p=0.007).

Group B: (Vibration, Bag Squeezing and Suctioning): On day 1 pre- and post-CPT, PaO₂/ FiO₂ change was non-significant (p=0.137). There was no difference in PaO₂/FiO₂ on post-op day 2 morning when compared with post-op day 1 evening value (p=0.586). On day 2 in the evening, PaO₂/FiO₂ improved significantly (p=0.007). PaCO₂ on day 1st pre- and post-CPT changes were non-significant (p=0.325). On day 2 in the morning, PaCO₂ improved towards normal which was significant (p=0.001). On day 2 in the evening, PaCO₂ again improved towards normal which was significant (p=0.30).

Group C: (Percussion, Vibration, Position change, Bag squeezing and suctioning). On day 1 pre- and post-CPT, PaO₂/ FiO₂ changes were non-significant (p=0.080). On day 2 in the morning, PaO₂/FiO₂ changes were non-significant (p=0.217). On day 2 in the evening, PaO₂/FiO₂ improved to 254.86 ± 38.25 from 232.74 ± 32.51 which was statically significant (p=0.000). PaCO₂. On day 1 pre- and post-CPT changes were significant (p=0.018). On day 2 in the morning, PaCO₂ changes were non-significant (p=0.995). On day 2 in the evening, PaCO₂ improved towards normal 39.67 ± 2.35 which was statically non-significant (p=0.347).

“Inter” Group Analysis: There were no significant differences between the study groups in PaO₂/FiO₂ or in PaCO₂ at any of the time points evaluated.

Discussion

This study shows that at no time during treatment was any group superior to the others in terms of PaO₂/FiO₂ and PaCO₂. PaO₂/FiO₂ showed no improvement following CPT on day 1 in all three groups. In group A, only percussion was given before suctioning, where as in group B, vibration and bag squeezing were given before suctioning. These two techniques were found to be equally effective. The combination of both techniques in group C, i.e. percussion, vibration, position change, bag squeezing and suctioning, did not show any additional benefit over the any of the single technique. In this group of patients, no patients had severely deteriorated changes in ABG before the study and could not show dramatic change following various combinations of techniques. Earlier studies showed, that CPT is of no value and has a negative effect in patients without many secretions.8,9,10

In group A, PaO₂/FiO₂ did not show any change in the evening following CPT. It may be therefore, that pre-CPT, the PaO₂/FiO₂ were not deranged. So with percussion and routine suctioning, PaO₂/FiO₂ was maintained until evening. But, because there was no percussion given in the night, second day morning PaO₂/FiO₂ dropped significantly.

Oxygenation of arterial blood is studied as the ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen (PaO₂/FiO₂). This is done to control for supplemental oxygen given to patients in critical care settings. The ratio of (PaO₂/FiO₂) is an indirect measure of oxygen content in the arterial blood and is representative of optimal gas exchange in the acini. A decrease in ratio of PaO₂ / FiO₂ indicated that less oxygen is available for tissue metabolism which can further lead to acidosis and multiple organ system failure. A decrease in PaO₂/FiO₂ can occur in mechanically ventilated patients as a consequence of pulmonary complications like atelectasis, retained secretions and ventilator associated bacterial colonization. Retained secretions increase dead space ventilation and act as a diffusion barrier to gas exchange. The oxygen transport is more adversely affected due to its slower diffusion rate rate which leads to a gross V/Q mismatch and decrease in PaO₂/FiO₂ levels.

In the evening of day 2, there was significant improvement in PaO₂/FiO₂ following percussion and suctioning which shows the need for CPT in paediatric patients following cardiac surgery. Other literature has also reported the use of chest percussion in improving oxygenation.11 Finner & Byoad (1978) reported the improvement in arterial oxygenation in the neonate following percussion using a contact heel technique. However, Hussey et al (1996)12 were unable to show any improvement in oxygenation, Connors et al (1980)12 found a negative correlation between the amounts of secretions and arterial oxygen

Save the Date...

Evolving Concepts in the Management of Complex Congenital Heart Disease III: San Diego

Jan. 19-21, 2012; Hyatt Regency Mission Bay, San Diego, CA
Contact: cme@rchsd.org
Hope, Restored.

A revolutionary treatment option designed to delay the need for surgical intervention. Restore hope for your patients with RVOT conduit dysfunction.

www.Melody-TPV.com
level. Husbey et al (1976)13 showed a decreased in PaO\textsubscript{2}. In another study by Wollmer et al (1985)14, no significant difference in oxygen saturation between pre- and post-treatment was seen. Gallon (1991)15 reported sputum production was significantly greater when percussion was included in the treatment regimen.

In group B, vibration and bag squeezing did not show any additional benefit, the results were the same as group A. PaO\textsubscript{2}/FiO\textsubscript{2} did not show any significant change in the evening following CPT. Again, there was no difference in PaO\textsubscript{2}/FiO\textsubscript{2} in post-op day 2 morning when compared with the post-op day 1 evening. Holody & Goldberg (1981)16 showed a significant increase in PO\textsubscript{2} at 30 min and 1 hour after completion of chest vibration, and said chest vibration is a useful therapeutic modality in the management of hypoxemia in patients with atelectasis or pneumonia. Fox et al (1978)17 reported mean PO\textsubscript{2} decreased significantly after suctioning and increased significantly after hyperventilation. Goronezano and Branthwaite (1972B)18 studied three different groups. Although treatment was similar in all groups, significant changes in PaO\textsubscript{2} were largely confined to patients in group 2 who were all suffering from serious cardiac pathology.

In conclusion, the present data suggest all three treatment modes were found to be effective in improving oxygenation of young children following cardiac surgeries in the ICU while on ventilation. Similarly all three regimens were found to be effective in normalizing the PaCO\textsubscript{2} level, although superiority of any regime over the others could not be proved. So, it can be concluded that young children need chest mobilization along with suctioning at regular intervals to avoid hypoxemia and carbon dioxide fluctuation after cardiac surgery.
Table 1: Comparison of PaO₂/FiO₂ Pre- and Post-CPT on Day 1 Among Groups

<table>
<thead>
<tr>
<th>GROUP A</th>
<th>GROUP B</th>
<th>GROUP C</th>
</tr>
</thead>
<tbody>
<tr>
<td>M± SD</td>
<td>M± SD</td>
<td>M± SD</td>
</tr>
<tr>
<td>Pre-CPT</td>
<td>236.20 ± 34.50</td>
<td>228.66 ± 52.02</td>
</tr>
<tr>
<td>Post-CPT</td>
<td>236.07 ± 26.55</td>
<td>242.23 ± 54.75</td>
</tr>
<tr>
<td>t</td>
<td>0.032</td>
<td>1.577</td>
</tr>
<tr>
<td>p</td>
<td>0.975</td>
<td>0.137</td>
</tr>
</tbody>
</table>

Table 2: Comparison of PaO₂/FiO₂ Pre- and Post-CPT on Day 2 Among Groups

<table>
<thead>
<tr>
<th>GROUP A</th>
<th>GROUP B</th>
<th>GROUP C</th>
</tr>
</thead>
<tbody>
<tr>
<td>M± SD</td>
<td>M± SD</td>
<td>M± SD</td>
</tr>
<tr>
<td>Pre-CPT</td>
<td>221.68 ± 26.15</td>
<td>244.89 ± 39.68</td>
</tr>
<tr>
<td>Post-CPT</td>
<td>233.66 ± 30.36</td>
<td>259.50 ± 54.36</td>
</tr>
<tr>
<td>t</td>
<td>3.098</td>
<td>4.780</td>
</tr>
<tr>
<td>p</td>
<td>0.008</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Table 3: Comparison of PaO₂/FiO₂ Post-CPT on 1st Day Evening and Post-CPT of 2nd Day Between Group

<table>
<thead>
<tr>
<th>GROUP A</th>
<th>GROUP B</th>
<th>GROUP C</th>
</tr>
</thead>
<tbody>
<tr>
<td>M± SD</td>
<td>M± SD</td>
<td>M± SD</td>
</tr>
<tr>
<td>1st Day post-CPT</td>
<td>236.07±26.55</td>
<td>242.23±54.75</td>
</tr>
<tr>
<td>2nd Day post-CPT</td>
<td>233.66±30.36</td>
<td>259.50±54.36</td>
</tr>
<tr>
<td>t</td>
<td>0.659</td>
<td>9.882</td>
</tr>
<tr>
<td>p</td>
<td>0.007</td>
<td>0.586</td>
</tr>
</tbody>
</table>

Table 4: Comparison of PaCO₂ of Pre- and Post- CPT on 1st Day Between Groups

<table>
<thead>
<tr>
<th>GROUP A</th>
<th>GROUP B</th>
<th>GROUP C</th>
</tr>
</thead>
<tbody>
<tr>
<td>M± SD</td>
<td>M± SD</td>
<td>M± SD</td>
</tr>
<tr>
<td>Pre-CPT</td>
<td>39.77±5.38</td>
<td>39.14±2.98</td>
</tr>
<tr>
<td>Post-CPT</td>
<td>38.51±3.90</td>
<td>40.09±3.22</td>
</tr>
<tr>
<td>t</td>
<td>1.349</td>
<td>1.019</td>
</tr>
<tr>
<td>p</td>
<td>0.199</td>
<td>0.325</td>
</tr>
</tbody>
</table>

Future Research
Further research with longer follow-up periods and larger populations is required for generalization of these results regarding chest physiotherapy in children.

References
16. Holody & Goldberg. The effect of mechanical vibration on physiotherapy on...

18. Gormezanol J and Branthwaite MA. Effects of physiotherapy during intermittent positive pressure ventilation. Anesthesia. 1972(b); 27: 258-263.

CCT

Corresponding Author:
Md. Abu Shaphe, PT, PhD
Associate Professor, Faculty of Applied Medical Sciences
Jazan University
Jazan, Saudi Arabia

Phone: +966597165564
shaphe72@yahoo.com

Rajeev Aggrawal, MPT, (PhD)
Neuro Physiotherapy AllIMS
New Delhi
India

Mohd Abid Geelani, MCH, Professor, CTVS
G.B. Pant Hospital
New Delhi
India

Jamal Ali Moiz, MPT, Assistant Professor CPRS
Jamia Milia Islamia
New Delhi
India

Need to Recruit a Pediatric Cardiologist?

Advertise in Congenital Cardiology Today, the only monthly newsletter dedicated to pediatric and congenital cardiologists.

Reach the most Board Certified or Board Eligible pediatric cardiologists throughout the U.S. and Canada.

Recruitment advertising includes full color in either the North American print edition or the electronic PDF International edition.

Available in 1/3 and 1/2 page vertical Recruitment ad sizes. We can even create the ad for you at no extra charge!

For more information contact:
Tony Carlson, Founder
CONGENITAL CARDIOLOGY TODAY
Tel: +1.301.279.2005
TCarlsonmd@gmail.com

PICS-AICS
Pediatric and Adult Interventional Cardiac Symposium
CHICAGO MARRIOTT CHICAGO DOWNTOWN
APRIL 15-18, 2012
www.picsymposium.com
SCAI Monthly Column: SCAI CHD Council Offers Online Bibliography for Quick Reference

By Eric Grammer

SCAI’s CHD Council has created an online bibliography of critical publications for congenital interventionalists that is now available online at www.scai.org/CHD/Bibliography.aspx.

The CHD Symposium will feature three days of uninterrupted, focused programming on interventional therapies for congenital and structural heart disease in children and adults. Headlining the program, Julio C. Palmaz, MD will be delivering the Mullins Keynote Lecture. The inventor of the first commercially-successful intravascular stent, Dr. Palmaz’s keynote will focus on the history and future of stent technology.

With a focus on case-based learning, SCAI’s uniquely collegial atmosphere provides ample opportunity to compare notes and network with a faculty of recognized leaders in the field of pediatric and adult congenital/structural interventional cardiology. Here’s your chance to get involved in the programming. We need your “I Blew It” and “Brain Scratcher” case submissions. The simple concept behind both the “Brain Scratchers” and “I Blew It” Sessions is that there is no better teaching method than coming together as a community and sharing our unusual and challenging cases.

The "Brain Scratchers" Session challenges attendees to solve hemodynamic, angiographic or interventional mysteries and to provide solutions for less than routine cases in the congenital catheterization laboratory. The "I Blew It" Sessions highlight the creative ways that our colleagues manage complications.

More importantly, the session addresses how to avoid such events in the future. If you have a case that might be a good learning tool for either session, please contact Thomas Fagan, MD, FSCAI, at fagan.thomas@tchden.org. Presentations should last no more than a total of 10 minutes including a dialogue with participants and moderators in how to deal with the complication. The presentation should conclude with some teaching points.

To download the preliminary program, learn more or register for SCAI 2012, please visit www.scai.org/SCAI2012.

SCAI Calls for Abstracts

Abstract submissions are now being accepted for SCAI 2012 in a variety of topic areas including pediatric, adult congenital, structural and valvular interventional therapies. In addition to being a great opportunity to present your research to leaders in the field, it is also a great opportunity to have it published, with all presented abstracts being printed in the field’s leading journal, Catheterization and Cardiovascular Interventions (CCI).

In addition, abstract presenters also receive free registration to SCAI 2012 and the Top 10 Abstracts are selected for oral presentations on stage during the sessions. Submission is free and easy, but the December 16th deadline will be here before you know it. Submit your abstracts at www.scai.org/SCAI2012Abstracts.

The Barth Syndrome Foundation

P.O. Box 974, Perry, FL 32348
Tel: 850.223.1128 info@barthsyndrome.org www.barthsyndrome.org

Symptoms: Cardiomyopathy, Neutropenia, Muscle Weakness, Exercise Intolerance, Growth Retardation
Medical News Products and Information

Special Congressional Briefing Examines Role of Public Health in Congenital Heart Disease

Every 15 minutes in hospitals across America, a baby is born with a congenital heart defect (CHD), or a malfunction of the heart’s structure and function. Thanks to the advances in modern medicine, more than 80% of these babies are surviving into adulthood and living healthy and productive lives. The children and adults living with CHDs still face unique health challenges requiring specialized life-long care.

A recent briefing on Capitol Hill sponsored by the American Academy of Pediatrics and co-sponsored by the American College of Cardiology (ACC) and other leading cardiovascular societies and patient advocacy groups, highlighted the important role of federal and state programs in CHD research, surveillance, screening and prevention. Senators Richard Durbin (D-IL) and Thad Cochran (R-Miss.), co-hosted the event, Congenital Heart Defects: A Lifelong Disease.

Panelist Geoffrey Rosenthal, MD, PhD, FACC, Professor of Pediatrics at the University of Maryland School of Medicine, said CHD places an undeniable burden on the public health system, as well as families. The Congenital Heart Futures Act, passed into law as part of the 2010 health reform legislation, would establish a national surveillance program for CHD patients and serve as a step in the right direction to reduce this burden, he asserted.

Rosenthal also pointed to new activities related to research, care, surveillance and policy development, including the Congenital Heart Public Health Consortium (CHPHC), of which the ACC is a member. The Consortium looks to prevent, enhance and prolong the lives of those with CHD through public health activities, including health promotion and education. Additionally, national CHD registries and other CHD collaborative quality improvement and multi-center research activities will continue to advance the care and management of the tiniest heart patients, who are destined to need life-long specialized heart care. Ultimately there is still more work to be done, Rosenthal maintains. “We need to expand birth defect monitoring programs, reduce disparities and plan for adequate health services,” he said. “How do we save those who are still dying? Physicians and the federal government have a critical role to play moving forward.”

The federal government took a huge step towards improving early detection for CHD patients this week. Health and Human Services (HHS) Secretary Kathleen Sebelius announced that all U.S. hospitals will be required to screen newborns for CHD using pulse oximetry. The Secretary’s Advisory Committee for Heritable Disorders in Newborns and Children had recommended adding pulse oximetry, an inexpensive and non-invasive test to the universal screening panel – a move the ACC and other professional societies and patient advocates in the CHD community have endorsed.

For more on the ACC’s involvement in CHD, visit the Adult Congenital and Pediatric Cardiology (ACPC) member section on CardioSource.org. The ACPC Section has played a major role in strengthening educational programming for congenital cardiology care providers and has several significant accomplishments in science and quality, including the development of the IMPACT Registry™ (Improving Pediatric and Adult Congenital Treatment), which tracks diagnostic and interventional cardiac catheterization in pediatric and congenital heart disease patients. In addition, the ICD Registry™ (Implantable Cardioverter Defibrillator) now includes data elements specific to the pediatric population.

Researchers Develop New Way to Predict Heart Transplant Survival

Johns Hopkins researchers say they have developed a formula to predict which heart transplant patients are at greatest risk of death in the year following their surgeries, information that could help medical teams figure out who would benefit most from the small number of available organs.

“Donor hearts are a limited resource,” says John V. Conte, MD, Professor of Surgery at the Johns Hopkins University School of Medicine and the senior author of the study. “Now, we have a simple-to-use tool that is highly predictive of survival after a heart transplant, and can help guide organ allocation decisions.”

Conte and his colleagues, writing in the September issue of *Annals of Thoracic Surgery*, pulled together a series of risk factors already associated with poor outcomes, such as age, race, gender, the cause of a patient’s heart failure and whether he or she was on dialysis, and then assigned a number of points to each factor. The sum of those points created a score. The higher the score, the higher the risk of death one year after transplant.

Some factors were weighted more heavily than others, such as female gender (three points); African-American race (three points), and the need for dialysis in the time between being put on the transplant waiting list and getting a transplant (five points).

Patients with the lowest scores — between zero and two — had a 92.5% chance of being alive 12 months after surgery. Patients with so-called IMPACT scores — the acronym the researchers came up with for the Index for Mortality Prediction After Cardiac Transplantation — above 20 points had a less than 50% chance of survival one year after surgery. Every point on the scale increased the chance of death within one year by 14%.

To develop and test the validity of IMPACT, Conte and his team analyzed data provided by the United Network of Organ Sharing comprising information from all heart transplants — 21,378 of them — conducted in the United States between 1987 and 2010.

More research is needed to learn what role is played by factors other than the recipient’s risks, Conte says. Results of their study suggest, for example, that an organ coming from a donor over the age of 50 or one that has been outside the body for more than four hours also increases the risk of death in the recipient, he says.

Update in Congenital Heart Management

Immediately preceding the World Congress of Cardiology
April 17, 2012; Jumeriah Beach Hotel, Dubai, UAE
For more information contact Alan Weisman at aweisman@childrensnational.org or call +1-202-476-2728

Course Directors:
Richard Jonas, MD and Gerard Martin, MD

Faculty:
Charles Berul, MD; Richard Levy, MD; Craig Sable, MD and David Wessel, MD

Children’s National Heart Institute

SAVE THE DATE

CONGENITAL CARDIOLOGY TODAY
www.CongenitalCardiologyToday.com
November 2011
More than 3,000 people are on the waiting list for a heart transplant in the United States, and many will die before they can get a new heart. Only about 2,000 heart transplants are performed in the US annually. Currently, determining who gets an available heart takes into account how long a patient has been on the list and how sick they are. There is no standardized consideration of other factors that may predict patients’ outcomes, as is the case in determining which patients receive available lungs for transplant. Incorporating the IMPACT score would add another dimension to the conversation about who gets a heart transplant, says Conte, Surgical Director of Heart Transplantation at Johns Hopkins.

“As clinicians, we make an educated guess of what the risk is going to be,” he says. “This tool provides a quantitative way to assess the risk.”

The other researchers involved in the study — all from Johns Hopkins — are Jeremiah G. Allen, MD; George Arnaoutakis, MD; Timothy J. George, MD; Stuart D. Russell, MD; and Ashish S. Shah, MD; Eric S. Weiss, MD, MPH, a former general surgery resident at Hopkins, was also involved.

Commonly Used Defibrillators Raise Risk of Problems

When it comes to defibrillators, simpler may be safer, even though more complex machines are used on a majority of patients.

That’s according to a new study from a team that included University of Colorado School of Medicine researcher Paul Varosy, MD. The group reviewed more than 100,000 records of cardiac patients. They found that there was more chance of surgical problems and death with devices that require electrical leads to be attached to two chambers of the heart compared to those that work on one chamber.

Although there are potential theoretical benefits, the higher-risk complex defibrillators have never been shown to result in improved survival or decreased rates of hospitalization, says Varosy, Assistant Professor of Medicine at the medical school.

"There is no reason for alarm, and it’s important to remember that defibrillators of all kinds have clearly-established benefits in terms of reducing mortality among patients at risk for sudden cardiac death,” Varosy says. "But this study does suggest that the simpler defibrillators may cause fewer short-term problems, suggesting that the routine use of dual-chamber defibrillators even in the absence of a simultaneous need for a pacemaker should be re-evaluated."

The two-chamber defibrillator is used in about six of 10 surgeries, according to Varosy, Director of Cardiac Electrophysiology at the VA Eastern Colorado Health Care System. The study was published in the Journal of the American College of Cardiology. It examined 104,000 records of cardiac cases from 2006-07.

Impact of Clinical and Echocardiographic Response to Cardiac Resynchronization Therapy

The Echocardiographic Response (reduction of left ventricular end-systolic volume) evaluated at 6 months follow-up, demonstrated to be a better predictor of long-term mortality than improvement in clinical status in a large population of CRT patients. Therefore, assessment of occurrence of left ventricular reverse remodeling at mid-term follow-up may be an adequate surrogate end point in heart failure patients treated with CRT.

The efficacy of Cardiac Resynchronization Therapy (CRT) has been demonstrated with significant reductions in mortality and morbidity of heart failure patients. However, many studies have evaluated the efficacy of CRT by means of improvement in heart failure symptoms (clinical response) or reduction in left ventricular volumes (left ventricular reverse remodeling) and improvement in left ventricular function (echocardiographic response) at mid-term follow-up (3 or 6 months after CRT implantation). Based on these surrogate end points, the efficacy of CRT may change significantly and, consequently, definition of response to CRT is still debated. Ideally, these surrogate end points should determine a significant reduction in mortality. Accordingly, the present evaluation investigated which definition of CRT response at mid-term follow-up (clinical improvement or left ventricular reverse remodeling) best predicts long-term mortality.

A total of 663 advanced heart failure patients were followed-up for the occurrence of all-cause mortality. At 6 months follow-up, the clinical and echocardiographic responses to CRT were evaluated. Clinical response to CRT was defined as a reduction in New York
Heart Association functional class of at least 1 point whereas echocardiographic response to CRT was defined by a reduction in left ventricular end-systolic volume of at least 15%. Based on these definitions, 510 (77%) patients showed clinical response and 412 (62%) patients showed echocardiographic response to CRT. During a mean follow-up of 37±22 months, 140 (21%) patients died.

Clinical and echocardiographic CRT responses were both significantly related to all-cause mortality. However, only echocardiographic response to CRT was independently associated with a superior survival. In particular, a patient who did not show echocardiographic response had a risk of death three times higher than a patient showing a good echocardiographic response (hazard ratio 0.38; 95% confidence intervals 0.27-0.50; p<0.001).

A cumulative 1%, 4% and 8% of the patients with LV reverse remodeling died by 12, 24 and 36 months follow-up, respectively. In contrast, a respective 8%, 19% and 27% of the patients without LV reverse remodeling died during the same time period (log-rank p <0.001).

The present findings have important implications in the design process of clinical trials, since the use of biological markers in the prevention and progression of heart failure (such as changes in left ventricular volumes and function) allows investigators to make a prompt evaluation of heart failure therapies and helps to understand the biologic process underlying the disease and the mechanisms of the therapy. In addition, the use of these surrogate endpoints permits smaller sample size, shorter trial duration and reduced costs.

In conclusion, the echocardiographic response (reduction of left ventricular end-systolic volume) evaluated at 6 months follow-up demonstrated to be a better predictor of long-term mortality than improvement in clinical status in a large population of CRT patients. Therefore, assessment of occurrence of left ventricular reverse remodeling at mid-term follow-up may be an adequate surrogate end point in heart failure patients treated with CRT.

iApp Paed ECG: Paediatric ECG Manual

Available for both iPhone and iPad, the Paed ECG iApp has become an invaluable tool to all health care professionals involved in the recording or reading of paediatric electrocardiograms. A comprehensive manual of Paediatric Electrocardiography designed and developed by Dr. Marion Tipple, Paediatric Cardiologist/Electrophysiologist at the British Columbia Children’s Hospital in Vancouver, Canada, it is written in straight-forward bullet style and divided into sections for ease of use. The extensive ECG database contains tracings of high resolution from pre-term infants to young adults. Criteria and examples for the different age group norms are included along with those of pre- and post-operative congenital and acquired heart disease.

The sections are organized as:

1. Basics: electrode placements, recording and lead explanation;
2. Normal: tables of normal values and variants;
3. Abnormal: recording errors, morphology, cardiac malposition, congenital heart disease (pre and post op), syndromes, acquired heart disease, system disorders;
4. Rhythm: normal and abnormal (diagrams of arrhythmia mechanisms, diagnostic criteria, differential diagnosis, inherited disorders (LQTS, Brugada, CPVT, ARVD), basic pacemaker interpretation and troubleshooting.
5. ECG Quiz: 100 tracings for self assessment.

The App has been designed for rapid access to information in busy working environments such as Emergency Rooms, Intensive Care and Neonatal units. Normal values are broken down into tables for individual age groups and colour coded to simulate the Broselow tape. Example ECGs are clearly listed in the relevant sections. In addition to being a diagnostic aid, the Paed ECG iApp, has proven effective in clinical teaching, self-learning and as a reference.

Recommended for Paediatric and Adult Cardiologists, Paediatricians, Intensivists, ER physicians, Neonatologists, Fellows, Residents, Medical students, Nurses and Technicians.

Study Examines Risk of Aortic Complications Among Patients with Common Congenital Heart Valve Defect

While the incidence of the life-threatening condition of aortic dissection is significantly higher than in the general population, it remains low among patients with the congenital heart defect, bicuspid aortic valve; however, the incidence of aortic aneurysms is significantly high, according to a study in the September 14th issue of *JAMA*.

Bicuspid aortic valve (BAV; defect of the aortic valve that results in the formation of two flaps that open and close, instead of the normal three) is the most common congenital heart defect, with the most serious complication from this condition (due to the high risk of death) being aortic dissection (a tear involving the layers of the wall of the aorta). “...it is estimated that BAV is responsible for more deaths than all other congenital heart defects combined. Consequently, carriers live under the threat of sudden death,” according to background information in the article. However, long-term, population-based data are lacking on the incidence of severe aortic complications among patients with BAV.

Hector I. Michelena, MD of the Mayo Clinic, Rochester, MN, and colleagues conducted a study to determine the incidence of aortic complications among patients with BAV and in the general BAV population. The researchers analyzed long-term follow-up data of residents in Olmsted County, Minn., diagnosed with BAV by echocardiography from 1980 to 1999 and searched for aortic complications of patients whose bicuspid valves had gone undiagnosed. The last year of follow-up was 2008-2009. The study included 416 patients with BAV, with average follow-up of 16 years.

Over the study period, aortic dissection occurred in 2 of the 416 patients and the 25-year cohort risk of aortic dissection after echocardiographic diagnosis was 0.5%. In a comparison of incident rates, patients with BAV had a 8.4 times increased risk of aortic dissection compared with the county’s general population, however, the absolute risk remained low. "The low aortic dissection incidence and lack of association with a detectable reduction in survival is reassuring," the authors write.
Of 384 patients without aortic aneurysms at the beginning of the study, 49 developed aneurysms at follow-up. The 25-year risk of aneurysm formation among BAV patients was 26%. Analysis of incidence rates indicated these patients had a 86 times higher risk of aneurysm formation compared with the general population. After aneurysm diagnosis, the 15-year risks of aortic surgery and aortic dissection were 46% and 7%, respectively. The 25-year risk of aortic surgery after BAV diagnosis was 25%.

The researchers also found that the dissection incidence was higher in patients older than 50 years and higher in those with baseline aortic aneurysms, "highlighting the importance of close monitoring and current guideline implementation in these subgroups."

Also, patients with BAV had a 25-year risk of valve replacement of 52%. "Our study confirms that aortic valve replacement remains the most common complication of patients with BAV. This highlights the importance of early recognition of BAV by careful cardiac auscultation [listening for sounds made by internal organs to aid in the diagnosis of certain disorders] in order to prevent heart failure due to late valvular surgery referrals, as well as potentially to prevent dissection by elective aorta surgical repair," the authors write.

"Research efforts should concentrate on elucidating biological pathways of BAV aortopathy [disease of the aorta] amenable to medical treatment, as well as identifying non-size markers for refining risk prediction of aortic dissection in these patients," the researchers conclude.

Cardiovascular Implantable Electronic Device-Related Infections Linked with Increased Risk of Death

An association has been found between infection associated with cardiovascular implantable electronic devices (CIEDs) and increases in mortality and hospital care costs, according to a report published Online First by Archives of Internal Medicine, one of the JAMA/Archives journals. The article is part of the journal’s Health Care Reform series.

Therapy with CIEDs, which include pacemakers, implantable cardioverter-defibrillators and cardiac resynchronization therapy/defibrillator devices, can reduce illness and death rates in appropriately selected patients, according to background information in the article. However, complications including infection may mitigate this benefit. "Although it is well recognized that the rate of CIED infection is increasing faster than the rate of CIED implantation, there are limited published data on the risk-adjusted mortality and cost associated with CIED infection or the relationship of these outcomes to different CIED types," write the authors.

Muhammad R. Sohail, MD, from the Mayo Clinic College of Medicine, Rochester, Minn., and colleagues analyzed the risk-adjusted total and incremental admission mortality, long-term mortality, admission length of stay (LOS) and admission cost associated with infection. They used data from the 100% Medicare Standard Analytic File Limited Data set version for inpatient admissions. The study group consisted of 200,219 Medicare fee-for-service patients who were admitted for CIED generator implantation, replacement or revision between January and December 2007. The researchers used the Centers for Medicare & Medicaid Services’ payment-rate calculation methods, and used factors to reflect the admitting hospital’s location, teaching status and indigent care load in order to standardize charges.

Researchers found a total of 5,817 admissions with infection. Depending on the CIED type, infection was associated with significant increases in adjusted admission mortality (4.6% to 11.3%, depending on type of device) and long-term mortality (28.5% to 35.1%, depending on type of device). Approximately half of the incremental long-term mortality occurred after patients were discharged. Depending on CIED type, the adjusted LOS was significantly longer with infection. With infection, the standardized adjusted incremental and total admission costs were $14,360 to $16,498 and $28,676 to $53,349, depending on CIED type. Intensive care accounted for more than 40% of the incremental admission cost. When researchers adjusted long-term mortality rate and cost ratios with infection by CIED type, pacemakers were associated with significantly greater increases in both measures, compared with implantable cardioverter-defibrillators or cardiac resynchronization therapy/defibrillator devices.

“Our work demonstrates that Medicare beneficiary admissions for CIED procedures...
COURSE DIRECTORS:
Ziyad M. Hijazi, MD, John P. Cheatham, MD, Carlos Pedra, MD & Thomas K. Jones, MD

- **Focusing on the Latest Advances in Interventional Therapies for Children and Adults** with congenital and structural heart disease, including the latest technologies in devices, percutaneous valves, stents and balloons.

- **Imaging Session** dedicated to the field of imaging in congenital and structural cardiovascular interventional therapies.

- **Daily Breakout Sessions** dedicated to the care of adults with congenital and structural heart disease.

- **Hot Daily Debates** between cardiologists and surgeons on controversial issues in intervention for congenital and structural heart disease.

- **Breakout Sessions** for cardiovascular nurses and CV technicians.

- The popular session of **“My Nightmare Case in the Cath Lab”**

- **Oral & Poster Abstract Presentations**

- **Live Case Demonstrations** featuring approved and non-approved devices, valves, and stents, and will be transmitted daily from cardiac centers from around the world. During these live cases, the attendees will have the opportunity to interact directly with the operators to discuss the management options for these cases.

Accreditation: Rush University Medical Center is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. Rush University Medical Center designates this live activity for a maximum of 35 AMA PRA Category 1 Credit(s)™. Physicians should claim only credit commensurate with the extent of their participation in the activity.

Abstract Submission Deadline is December 1, 2011.
For registration and abstract submission go to www.picsymposium.com
with infection are associated with significant, device-dependent, incremental increases in admission mortality and long-term mortality, LOS, and cost compared with those without infection," write the authors. "Intensive care and pharmacy services accounted for more than half of the incremental cost with infection and could be targeted to reduce costs associated with management of CIED infection. The etiology of excess mortality in patients with CIED infection after hospital discharge remains unclear and merits further investigation."

In an accompanying commentary, Ronan Margey, MD, MRCP, from Massachusetts General Hospital and Harvard Medical School, Boston, describes the increase in both CIED use and of related infections. The author notes that in 2000, approximately 3.4 million people worldwide were living with a permanent CIED, and that new device implantations in the United States increased 49% between 1999 and 2003. Infection rates related to CIEDs also appear to have increased—in one Medicare analysis, a rise of 124% in proven CIED infection between 1990 and 1999 was found.

“There are significant cost implications for CIED infection, with the opportunity cost of having to remove a device and potentially implant a new one,” writes Margey. The infections also exert a toll on health, according to the results from Sohail and colleagues’ study. “It provides further evidence that patients who develop CIED infection have an ongoing poor prognosis, with more than half of the mortality occurring during follow-up,” Margey points out.

“In the current era of appropriate resource utilization, the timely article by Sohail et al highlights the serious cost implications of CIED infection,” Margey concludes. “It is a warning siren to physicians to be sure in the current era of appropriate resource utilization, the timely article by Sohail et al highlights the serious cost implications of CIED infection, the timely article by Sohail et al highlights the serious cost implications of CIED infection, the timely article by Sohail et al highlights the serious cost implications of CIED infection, the timely article by Sohail et al highlights the serious cost implications of CIED infection, the timely article by Sohail et al highlights the serious cost implications of CIED infection, the timely article by Sohail et al highlights the serious cost implications of CIED infection, the timely article by Sohail et al highlights the serious cost implications of CIED infection, the timely article by Sohail et al highlights the serious cost implications of CIED infection."

The Society of Cardiovascular Computed Tomography (SCCT) announced the winners of the Toshiba Young Investigator Award (YIA) that were recently presented at the society’s 6th Annual Scientific Meeting. Sponsored by an educational grant from Toshiba America Medical Systems, Inc., the YIA award supports the professional and clinical development of those within five years of completion of a training program.

The finalists each submitted a mini-manuscript of 1,000 words, concerning research related to the technical and clinical advancement of cardiovascular CT. Each finalist also gave an oral presentation at the 6th Annual Scientific Meeting. All five finalists will be granted a free year of SCCT membership, and two winners have been recognized.

The winners of this year’s YIA are:

- Amit Patel, MD - University of Chicago Medical Center, Chicago, IL. “Detection of Myocardial Perfusion Abnormalities Using Ultra-Low Radiation Dose Regadenoson Stress Multidetector Computed Tomography.”
- Brad Traeger, PhD - North Dakota State University, Fargo, ND. “Characterization of Anatomic (AOA) versus Effective Orifice Area (EOA) and Pressure Recovery of Native Aortic Valve Stenosis (NAS) Using Computational Fluid Dynamics (CFD) and Computed Tomography (CT) Derived In Vivo Aortic Valve-Root Geometry (IVG).”

CDC’s New Congenital Heart Defects Website

The CDC has created a research-based site that is user-friendly, up-to-date, and appealing.

Some of the new features of the site include:

- Easy-to-read information on prevention, risk factors, diagnosis, and living with a congenital heart defect.
- Information about specific congenital heart defects.
- A compilation of important data and scientific publications.
- An overview of the work CDC and its partners are doing in the area of congenital heart defects.

Visit the CDC at: www.cdc.gov/ncbddd/heartdefects/index.html.

You can also follow the CDC on Facebook (www.facebook.com/#!/CDC) and Twitter (www.twitter.com/NCHDDD).
THE INFINIX-i: RADIAL access WITHOUT LIMITS.

Toshiba’s Infinix™-i puts the tools for successful transradial intervention at your fingertips. Combining unsurpassed C-arm positioning with high-quality imaging, Infinix-i enables left and right side access without compromise. At Toshiba, we’re making radial access intervention more efficient than ever – for your patients, your clinical team and your practice. medical.toshiba.com