A Rare Fetal Diagnosis: Aortico-Left Ventricular Tunnel

By Brie Ann Muller, MD; Karim A. Diab, MD

Introduction

Aortico-Left Ventricular Tunnel (ALVT) is a rare congenital anomaly, occurring in less than 0.1-0.5% of patients with Congenital Heart Disease, and is usually diagnosed in the postnatal period.\(^1\),\(^2\) It is comprised of a tunnel-like communication from the ascending aorta to the left ventricle. There have been reported cases of communication with the right ventricle, but these remain much less frequent. Associated coronary anomalies have occasionally been reported as well. Only a few cases of prenatal diagnoses have been previously reported, as this can be a challenging lesion to diagnose in the fetus. However, advancements in fetal imaging are likely to lead to more antenatal diagnosis of ALVT. Of the reported cases with a prenatal diagnosis, only a few have had a favorable outcome after surgery. We report a case of ALVT, that was diagnosed at 26 weeks of gestation and successfully managed surgically in the newborn period.

Case Presentation

A 30 year-old, G3P2, female was referred to our center at 26 weeks of gestation for a fetal cardiac evaluation due to suspicion of a cardiac anomaly on routine screening ultrasound. A fetal echocardiogram revealed ALVT resulting in severe regurgitation and dilation of the left ventricle with increased wall thickness and mildly decreased systolic function (Figure 1). Additional fetal echocardiogram findings included thickened and dysplastic aortic valve leaflets with mild aortic valve regurgitation and dilated ascending aorta with significant flow reversal across the aortic arch (Figure 2). There was cardiomegaly with a CT ratio of 0.6. The patient was monitored with serial echocardiograms with normalization of ventricular function and no evidence of hydrops, and was delivered at 38 weeks by normal vaginal delivery.

Postnatal echocardiogram confirmed the prenatal diagnosis of ALVT (Figure 3) with the additional suspicion of a coronary artery anomaly, as there was no flow visualized in the right coronary artery (RCA). Cardiac computed tomography angiography confirmed the findings with a tunnel seen from the aortic root, extending anteriorly to the aortic valve and inserting into the LV outflow tract. The left coronary artery origin was normal and the right coronary artery appeared to originate from the right aortic root adjacent and posterior to the insertion of the tunnel. The infant underwent surgical patch repair on Day of Life 3 with patch placement at the aortic end of the tunnel. The right coronary ostium, and RCA were not visualized intra-operatively, but this did not impact the repair. Post-operative course was complicated by a large pericardial effusion which was drained, and the patient was discharged home at 14 Days of Life. On serial follow-up visits, the patient was growing well, and an echocardiogram revealed initial mild residual patch leak at the aortic end of the tunnel that subsequently resolved at 5 months of age, and normal left ventricular systolic function.

Discussion

Since Levy et al. first described ALVT in 1963\(^3\), approximately 130 cases have been reported; of those, fetal diagnoses occurred in less than 20%. Fetal diagnosis of ALVT was first reported in 1995\(^4\) and appears to be on the rise in recent years, likely due to improvements in routine ultrasound screening. Historically, survival for patients with fetal diagnosis of ALVT has been lower.
than for those diagnosed in infancy or later in life. This was likely because those diagnosed in utero had severe aortic regurgitation, dilated left ventricles with poor function and hydrops, which prompted their fetal diagnosis. Whether or not survival is improving for those patients with fetal diagnosis of ALVT remains uncertain. In 1996, Sousa-Uva described 3 antenatal cases of ALVT, all of which died (1 was due to pregnancy termination). In recent years, multiple cases have been reported with more favorable outcomes. A more hopeful report by Singh et al. described 4 antenatal cases, 3 of which survived.

Signs of ALVT by routine obstetric ultrasound include: dilated and/or dysfunctional left ventricle, enlarged cardiothoracic ratio and Doppler color flow mapping suggesting a regurgitant flow into the left ventricle. Other signs more likely detected by fetal echocardiography include: LV hypertrophy, reversal of flow in the ascending and descending aorta, dilated ascending aorta, increased pulsatility of the ascending and descending aorta in combination with no or minimal regurgitation through the aortic valve itself. The presence of a “cockade sign” by 2D and color Doppler demonstrating the tunnel as a double ring structure around the aortic valve annulus can help suggest the diagnosis as well.

Although fetal echocardiography will likely distinguish ALVT from isolated aortic valve regurgitation, a few other diagnoses may remain on the differential list – mainly, ruptured sinus of Valsalva and coronary artery-LV fistula, in addition to an associated VSD. By postnatal echocardiogram, the differential diagnosis can be
10 YEARS.
10,000 PATIENTS.
1 LIFE-CHANGING VALVE.

Melody™
Transcatheter Pulmonary Valve Therapy

Designed Specifically For Pulmonary Valve Replacement

The Melody valve is the longest studied transcatheter valve and is proven to delay conduit replacement:

88.8% freedom from reoperation at 7 years post-implant*
Melody Transcatheter Pulmonary Valve Ensemble™ II Transcatheter Valve Delivery System

Important Labeling Information for United States

Indications: The Melody TPV is indicated for use as an adjunct to surgery in the management of pediatric and adult patients with the following clinical conditions:

- Existence of a full (circumferential) RVOT conduit that was equal to or greater than 16 mm in diameter when originally implanted AND Dysfunctional RVOT conduits with a clinical indication for intervention, AND - regurgitation: ≥ moderate regurgitation, AND/OR - stenosis: mean RVOT gradient ≥ 35 mm Hg

Contraindications: None known.

Warnings/Precautions/Side Effects:

- DO NOT implant in the aortic or mitral position. Preclinical bench testing of the Melody valve suggests that valve function and durability will be extremely limited when used in these locations.
- DO NOT use if patient’s anatomy precludes introduction of the valve, if the venous anatomy cannot accommodate a 22 Fr size introducer, or if there is significant obstruction of the central veins.
- DO NOT use if there are clinical or biological signs of infection including active endocarditis. Standard medical and surgical care should be strongly considered in these circumstances.
- Assessment of the coronary artery anatomy for the risk of coronary artery compression should be performed in all patients prior to deployment of the TPV.
- To minimize the risk of conduit rupture, do not use a balloon with a diameter greater than 110% of the nominal diameter (original implant size) of the conduit for pre-dilatation of the intended site of deployment, or for deployment of the TPV.
- The potential for stent fracture should be considered in all patients who undergo TPV placement. Radiographic assessment of the stent with chest radiography or fluoroscopy should be included in the routine postoperative evaluation of patients who receive a TPV.
- If a stent fracture is detected, continued monitoring of the stent should be performed in conjunction with clinically appropriate hemodynamic assessment. In patients with stent fracture and significant associated RVOT obstruction or regurgitation, reintervention should be considered in accordance with usual clinical practice.

Potential procedural complications that may result from implantation of the Melody device include the following: rupture of the RVOT conduit, compression of a coronary artery, perforation of a major blood vessel, cerebrovascular events (TIA, CVA), infection/sepsis, fever, hematoma, radiation-induced erythema, blistering, or peeling of skin, pain, swelling, or bruising at the catheterization site.

Potential device-related adverse events that may occur following device implantation include the following: stent fracture. *Stent fracture resulting in recurrent obstruction, endocarditis, embolization or migration of the device, valvular dysfunction (stenosis or regurgitation), paravalvular leak, valvular thrombosis, pulmonary thromboembolism, hemolysis.

*The term “stent fracture” refers to the fracturing of the Melody TPV. However, in subjects with multiple stents in the RVOT it is difficult to definitively attribute stent fractures to the Melody frame versus another stent.

For additional information, please refer to the Instructions For Use provided with the product.

CAUTION: Federal law (USA) restricts this device to sale by or on the order of a physician.

Important Labeling Information for Geographies Outside of the United States

Indications: The Melody Transcatheter Pulmonary Valve Ensemble is indicated for use in patients with the following clinical conditions:

- Patients with regurgitant prosthetic Right Ventricular Outflow Tract (RVOT) conduits with a clinical indication for invasive or surgical intervention, OR
- Patients with stenotic prosthetic RVOT conduits where the risk of worsening regurgitation is a relative contraindication to balloon dilation or stenting.
- Existence of a full (circumferential) RVOT conduit that was equal to or greater than 16 mm in diameter when originally implanted.

The intended lifetime for the Melody device is 2 years.

Contraindications:

- Venous anatomy unable to accommodate a 22 Fr introducer sheath; implantation in left heart.
- Unfavorable right ventricular outflow tract for good stent anchorage.
- Severe right ventricular outflow obstruction, which cannot be dilated by balloon.
- Obstruction of the central veins.
- Clinical or biological signs of infection.
- Active endocarditis.
- Known allergy to aspirin or heparin.
- Pregnancy.

Potential Complications/Adverse Events: Potential procedural complications that may result from implantation of the Melody device include the following: rupture of the RVOT conduit, compression of a coronary artery, perforation of a major blood vessel, embolization or migration of the device, perforation of a heart chamber, arrhythmias, allergic reaction to contrast media, cerebrovascular events (TIA, CVA), infection/sepsis, fever, hematoma, radiation-induced erythema, pain at the catheterization site.

Potential device-related adverse events that may occur following device implantation include the following: stent fracture resulting in recurrent obstruction, endocarditis, embolization or migration of the device, valvular dysfunction (stenosis or regurgitation), paravalvular leak, valvular thrombosis, pulmonary thromboembolism, hemolysis.

For additional information, please refer to the Instructions For Use provided with the product.

The Melody Transcatheter Pulmonary Valve Ensemble II Transcatheter Delivery System has received CE Mark approval and is available for distribution in Europe.

Congenital Cardiology Today Can Help You Recruit:

- Pediatric Cardiologists
- pediatric Interventional Cardiologist
- Adult Cardiologist focused on CHD
- Congenital/Structural Heart Surgeons
- Echocardiographers, EPs
- Pediatric Transplant Cardiologist

Reach over 6,000 BC/BE Cardiologists focused on CHD worldwide:

- Recruitment ads include color!
- Issues’s email blast will include your recruitment ad!
- We can create the advertisement for you at no extra charge!

Contact:

Tony Carlson
+1.301.279.2005 or tcarlsonmd@gmail.com
narrowed even further when the coronary artery anatomy, ventricular septum and ascending aorta can be studied in detail. ALVT can be distinguished from ruptured sinus of Valsalva by the more anterior and superior origin of the tunnel and the absence of a dilated sinus of Valsalva. Normal right and left coronary artery anatomy will eliminate the possibility of a coronary artery-LV fistula, although one must take into account the possibility of coronary artery abnormalities in association with ALVT. Cases have been reported of single left coronary artery and anomalous origin of the right coronary artery from the ALVT. Therefore, precise assessment of the coronary anatomy must be done in those with suspected ALVT and additional imaging modalities may be necessary in these patients, specifically cardiac catheterization with angiography, cardiac CT or MRI. Lastly, the absence of left-to-right shunt across the LV septum will exclude an associated VSD.

Further complicating the diagnosis, aortic valve pathology is often seen with ALVT. Bicuspid aortic valve with varying degrees of aortic stenosis have been reported. In one extreme case, the tunnel was mistaken for the LVOT and aortic valve due to aortic atresia. More severe forms of aortic stenosis will lead to LV hypertrophy, myocardial fibrosis and LV dysfunction. These are likely the patients with ALVT who present with fetal hydrops and in utero demise.

The patient with signs of ALVT on fetal echocardiogram should be followed frequently after diagnosis due to the possibility of progressive LV dilatation and subsequent dysfunction with the ultimate scenario of fetal hydrops. After delivery, the diagnosis should be confirmed by transesophageal echocardiogram, and any further imaging necessary, as mentioned above. Once complete evaluation of the cardiac anatomy has been performed and ALVT confirmed, repair is usually prompt, pending any other comorbidities.

Treatment for this lesion is primarily surgical, with patch or suture closure at either or both ends of the tunnel. Transcatheter device closure has been described for the initial closure of the defect, as well as for residual defects after surgical patch closure. Survival has improved to nearly 100% following surgical closure. The risk factors for increased mortality appear to be: size of the tunnel and resulting amount of regurgitation, concomitant aortic valve abnormalities, coronary artery anomalies and resultant myocardial ischemia and ventricular dysfunction.

In conclusion, ALVT is a surgically treatable cardiac lesion with good long-term results. Patients diagnosed in utero tend to have greater risk for early mortality. Prenatal diagnosis of ALVT is possible, and can aid in decisions regarding postnatal care and timely surgical treatment.

References
ONE PARTNER, MANY SOLUTIONS

Only Medtronic offers a broad portfolio of solutions to manage your patients with Congenital Heart Disease throughout their lifetime.

Transcatheter and Surgical Heart Valves | RVOT Conduits | Ablation Technologies | ICDs | Oxygenators and Filters | Cannulae | Pacemakers | Pulse Oximetry Monitoring for CCHD Screening | Cerebral/Somatic Monitoring
Pulmonary Arterial Hypertension with Atrial Septal Defect in a Newborn Baby with Goldenhar Syndrome

Preeti Srivastava, DNB; Asit Kumar Mishra, MD; Md Waseem Uddin, MD; Mrigendra Nath Tudu, MD

Introduction

Goldenhar Syndrome (Oculo-Auriculo-Vertebral Syndrome - OAVS) with hemifacial microsomia is a rare congenital anomaly involving the first and second branchial arches.

It is a disorder where the patient’s facial features are incompletely developed on one side, resulting in eye, ear, and jaw abnormalities. In 85% of patients with Goldenhar Syndrome, only one side of the face is affected. Cervical spine vertebral deformities are part of the collection of symptoms.\(^1\)

The syndrome was first described in 1952 by the French ophthalmologist Maurice Goldenhar.\(^2\) The incidence of Goldenhar Syndrome has been reported to be between 1:3500 and 1:5600, with a male:female ratio of 3:2(3). The exact etiology is not known. However, it is possible that abnormal embryonic vascular supply, disrupted mesodermal migration or some other factor leads to defective formation of the branchial and vertebral systems.\(^3,4\) Most of the cases have been sporadic. Autosomal dominant, autosomal recessive and multifactorial modes of inheritance have also been suggested.\(^3\)

Ingestion of drugs such as thalidomide, retinoic acid, tamoxifen, and cocaine by the pregnant mother may be related to the development of this syndrome. Maternal diabetes, rubella, and influenza have also been suggested as etiologic factors.\(^5\)

The classic features of this syndrome include: ocular changes such as microphthalmia, epibulbar dermoids, lipodermoids, and coloboma; aural features such as pre-auricular tragi, hearing loss, and microtia; and vertebral anomalies such as scoliosis, hemivertebrae, and cervical fusion.\(^2,5\)

Systemic features are cardiac and renal malformations.\(^5,7\) Congenital heart defects have been reported in 5%-58% of patients with OAVS. Tetralogy of Fallot and Ventricular Septal Defects are the most common cardiovascular anomalies associated with OAVS.\(^5\)

Here we report a rare association of Atrial Septal Defect with Pulmonary Arterial Hypertension in a newborn with Goldenhar Syndrome presenting with congestive cardiac failure.

Case Report

A 5-day-old, male baby, weighing 2.4 kg was admitted with complaints of breathing difficulty and refusal to feed for 3...
days. The baby was born at 38 weeks gestational age to a 32 year old, gravida 3, para 2, abortion 1, mother by normal delivery. The baby had cried immediately after birth, and was started on breastfeeds soon after birth. Ante-natal history was insignificant.

On examination, the baby was having respiratory distress, mild icterus: head-to-foot examination revealed several anomalies in form of abnormal pinna of right ear (Figure 1), right mandibular hypoplasia, right-sided facial paralysis (Figure 2), bilateral coloboma of iris (Figure 3) and retinochoroidal coloboma. Systemic examination showed normal lungs, hyperdynamic precordium with normal heart sounds, abdomen was soft with palpable liver 4 cm below the subcostal line. A detailed work-up was done to rule out other anomalies. CECT brain scan showed posterior falx, tentorial and bitemporal minimal cortical hemorrhage (Figure 4). Echocardiography revealed 12 mm ASD, L-R shunt, 3 mm PDA with moderate PAH (Figure 5). USG abdomen was normal. Chest X-ray and OAE were normal. X-rays of thoracic and lumbar spine were normal.

Baby was managed with antibiotics, fluid, and oxygen. Cardiac decongestive measures were added after ECHO findings. Baby gradually stabilized, and was put on feeds. He was discharged after 7 days on decongestive measures, and advised to attend a cardiac centre.

Discussion

Review of literature reveals that patients with Goldenhar Syndrome usually present in childhood, adolescence or adulthood with audiovisual or skeletal problems. They might present in infancy due to facial dysmorphism or complications arising due to Congenital Heart Disease. Frequency of cardiovascular malformations in this syndrome varies between 5-58%. Cardiovascular developmental anomalies in Goldenhar Syndrome are usually severe, such as Tetralogy of Fallot, Ventricular Septal Defect, Wolf-Parkinson-White Syndrome and other vascular anomalies. In our case, the baby presented in early neonatal period (on Day 5) with signs of congestive heart failure. Echocardiography revealed a large ASD with small PDA and moderate PAH. The occurrence of features of CCF with the identified cardiac lesions could not be
explained and hence baby was referred to higher cardiac centre for further evaluation.

This case is being reported due to the rare presentation of Goldenhar Syndrome with ASD, PAH and CCF in the early neonatal period.

“Review of literature reveals that patients with Goldenhar Syndrome usually present in childhood, adolescence or adulthood with audiovisual or skeletal problems. They might present in infancy due to facial dysmorphism or complications arising due to Congenital Heart Disease. Frequency of cardiovascular malformations in this syndrome varies between 5-58%.8,9”

References

CCT

Profile of Principal Author

Preeti Srivastava, DNB (Paediatrics)
Currently working as Registrar in Dept. of Paediatrics, Tata Main Hospital, Jamshedpur. The first author has had four and half years of post PG experience and is currently working in the neonatal unit for two and a half years. The author firmly believes in serving the paediatric community with competence and compassion and has a special interest in Pediatric Neurology subspecialty.

E-mail comments to: CCT-Mar17-GS@CCT.bz

The congenital heart professionals network exists to facilitate communications between congenital heart professionals locally, regionally, and globally.

JOIN TODAY www.chipnetwork.org

C O N G E N I T A L C A R D I O L O G Y T O D A Y

CALL FOR CASES AND OTHER ORIGINAL ARTICLES

Do you have interesting research results, observations, human interest stories, reports of meetings, etc. to share?

Submit your manuscript to: RichardK@CCT.bz

• Title page should contain a brief title and full names of all authors, their professional degrees, and their institutional affiliations. The principal author should be identified as the first author. Contact information for the principal author including phone number, fax number, email address, and mailing address should be included.
• Optionally, a picture of the author(s) may be submitted.
• No abstract should be submitted.
• The main text of the article should be written in informal style using correct English. The final manuscript may be between 400-4,000 words, and contain pictures, graphs, charts and tables. Accepted manuscripts will be published within 1-3 months of receipt.
• Abbreviations which are commonplace in pediatric cardiology or in the lay literature may be used.
• Comprehensive references are not required. We recommend that you provide only the most important and relevant references using the standard format.
• Figures should be submitted separately as individual separate electronic files. Numbered figure captions should be included in the main Word file after the references. Captions should be brief.
• Only articles that have not been published previously will be considered for publication.
• Published articles become the property of the Congenital Cardiology Today and may not be published, copied or reproduced elsewhere without permission from Congenital Cardiology Today.
New clinical practice guidelines have been issued by The Society of Thoracic Surgeons (STS) that include major recommendations for the use of surgical ablation when treating Atrial Fibrillation (Afib), the most common type of irregular heartbeat. The guidelines, posted online on December 13, 2016 in The Annals of Thoracic Surgery, and appeared in the January 2017 print issue.

“These guidelines represent nearly 2 years of effort by some of the nation’s leading experts in the surgical treatment of atrial fibrillation,” said guidelines co-authors Vinay Badhwar, MD and Gordon F. Murray Professor and Chair of the West Virginia University Heart & Vascular Institute. “This important document highlights the increasing global evidence on the safety and efficacy of surgical ablation for the treatment of Afib.”

STS believes that the practice of summarizing current scientific evidence into clinical practice guidelines and recommendations may contribute importantly to improving surgical outcomes, as well as the quality of patient care. In this case, the literature revealed that surgical ablation as a treatment option for Afib has experienced continued development over the last 30 years, with its frequency and success steadily increasing. The guideline writing committee merged these findings into a singular consensus paper to shape practice, concluding that surgical ablation is effective in reducing Afib and improving quality of life, and so deserves a more prominent role in adult cardiac surgery.

In patients with Afib, rapid, disorganized electrical signals cause the two upper parts of the heart (the atria) to quiver. The quivering upsets the normal rhythm between the atria and the lower parts of the heart (the ventricles). As a result, the ventricles may beat fast and without a regular rhythm.

Afib can lead to blood clots, stroke, heart failure, and other heart-related complications. According to the American Heart Association (AHA), untreated Afib doubles the risk of heart-related deaths and is associated with a significantly increased risk for stroke. At least 2.7 million Americans are living with Afib.

“It is recognized that surgical ablation impacts long-term outcomes with improvements in normal heart rhythm, quality of life, and stroke reduction,” said Dr. Badhwar. “Current evidence reveals that surgical ablation can be performed without significant impact to major complications or death.”

One option for Afib treatment—as the new clinical guidelines recommend—is surgical ablation, also known as the maze procedure. When performing surgical ablation, the surgeon makes very specific and defined lesions in the heart. Scar tissue forms, blocking the abnormal electrical signals while also creating a controlled path for electricity in the heart to follow. The heartbeat should eventually normalize.

Surgical ablation can be done as a standalone procedure or in combination with another heart surgery. In developing these new guidelines, the authors assessed the safety of performing surgical ablation for three surgical approaches: primary open atrial operations where the left atrium, or top chamber of the heart, is already being opened, such as mitral valve repair or replacement and/or tricuspid valve repair; primary closed atrial operations when the left atrium would not otherwise be open, such as Coronary Artery Bypass Grafting (CABG) and/or Aortic Valve Replacement (AVR) operations; and standalone operations when the only goal is to perform surgical ablation to treat Afib.

The new clinical practice guidelines offer evidence-based recommendations that include:

- Surgical ablation for Afib at the time of concomitant mitral operations to restore cardiac rhythm;
- Surgical ablation for Afib at the time of concomitant isolated AVR, isolated CABG, and AVR+CABG operations to restore cardiac rhythm; and
- Surgical ablation as a primary standalone procedure to restore cardiac rhythm for symptomatic Afib that is resistant to medication or catheter ablation.

The authors also recommend a multidisciplinary heart team assessment, treatment planning, and long-term follow-up in order to optimize patient outcomes in the treatment of Afib.

“These guidelines may help guide surgeons when faced with a challenging decision on the management of Afib,” said Dr. Badhwar. “The guidelines represent an assimilation of the world’s literature; they do not supersede the final medical decision of the surgeon. It is important to remember that the ultimate choice of any therapy remains between the patient and their doctor.”

Therapy for Abnormal Heartbeats May Cause Brain Injury

UCSF Researchers Find Link Between Ablation and Brain Lesions

A common treatment for irregular heartbeats known as catheter ablation may result in the formation of brain lesions when it is performed on the left side of the heart, according to new research at UC San Francisco. Importantly, there also is evidence these lesions may be associated with cognitive decline, meaning they may not be benign.

In a small study of patients undergoing catheter ablation for common abnormal heartbeats from the lower chamber of the heart (Premature Ventricular Contractions (PVCs)), researchers found a significantly higher rate of seemingly asymptomatic brain injury due to embolism among the patients whose therapy occurred on the left ventricle of the heart, which supplies blood to the brain, compared to patients whose therapy was conducted on the right ventricle, which pumps blood to the lungs.

The researchers recommend further study on the impact of these lesions and strategies to avoid them. Their study appeared online Jan. 24, 2017, in the American Heart Association journal Circulation.

“The rate of asymptomatic emboli in similar procedures for other types of heart rhythm disturbances tends to be 10%-20%,” said study senior author Gregory Marcus, MD, MAS, a UCSF Health Cardiologist and Director of Clinical Research in the UCSF Division of Cardiology.
"Our study finding is relevant to a large number of patients undergoing this procedure and hopefully will inspire many studies to understand the meaning of and how to mitigate these lesions," Marcus said. "This also will become an important consideration as we think about how to optimally help the large number of people out there with PVCs."

PVCs are extra, abnormal heartbeats originating in the ventricles. They disrupt the heart's regular rhythm and typically have not been a reason for concern.

However, recent research by Marcus and his colleagues demonstrated that PVCs are an important predictor of heart failure and mortality and can cause very bothersome symptoms. Further, such early beats occurring continuously for more than 30 seconds is a potentially serious cardiac condition called ventricular tachycardia (VT).

Given growing recognition of all these phenomena, catheter ablation for PVCs and VT is mainstream and becoming even more common, with well more than 235,000 such procedures performed annually. It is also increasingly used for patients with heart failure due to weak heart muscle that may improve after frequent PVCs are eradicated.

In this minimally invasive procedure, thin, flexible wires called catheters are inserted into a vein and threaded into the heart. The tip of the catheter either delivers heat or extreme cold to destroy tissue responsible for starting or maintaining the abnormal heart rhythm. The procedure can result in the complete and permanent cessation of the PVCs/VT that are targeted and is generally considered low risk.

An "embolism" occurs when an object moves through the bloodstream from one part of the body to another. Catheters placed in the left side of the heart may lead to brain injury if something that can occlude a blood vessel is either formed, such as a blood clot, or dislodged by the catheter and travels to the brain. Because the right side of the heart leads to the lungs, not the brain, brain emboli generally are not a concern.

Data from previous left heart-based procedures has shown that brain injury thought to be due to embolism rarely occurs. Those emboli generally have been attributed to either issues with the particular patient populations studied or the risks inherent to treating another common heart rhythm disturbance, atrial fibrillation, with ablation.

In this Circulation study, Marcus and his colleagues enrolled 18 patients scheduled for VT or PVC ablation over a nine-month period. The average patient age was 58, with half being men, half having a history of hypertension, and a majority having no known vascular disease or heart failure. Most patients were generally healthy.

Left Ventricular (LV) ablation was performed in 12 patients compared to a control group of six patients who underwent Right Ventricular (RV) ablation. Pre- and post-procedural brain magnetic resonance imaging (MRI) was performed on each patient within a week of the ablation, along with a complete neurological examination.

Overall, seven of the 12 patients (58%) who underwent LV ablation experienced 16 brain embolisms combined, compared to zero patients who underwent the RV ablation. Seven of 11 patients (63%) who underwent a retrograde approach to their LV ablation developed at least one new brain lesion.

"Further research is important to understanding the long-term consequences of these lesions and determining optimal strategies to avoid them," said lead author Isaac Whitman, MD, UCSF Cardiac Electrophysiology Fellow.

Other UCSF contributors to the Circulation study were Rachel Gladstone, Cardiology Research Assistant; Nitish Badhwar, MD, Professor of Medicine; Henry Hsia, MD, Professor of Medicine; Byron Lee, MD, Professor of Medicine; S. Andrew Josephson, MD, Carmen Castro Franceschi and Gladyne K. Mitchell Neurohospitalist Distinguished Professor of Neurology; Karl Meisel, MD, Assistant Professor of Neurology; William Dillon Jr., MD, Elizabeth A. Guillaumin Professor of Radiology; Christopher Hess, MD, PhD, Professor of Radiology; and Edward Gerstenfeld, MD, Professor of Medicine and holder of the Melvin M. Scheinman Endowed Chair in Cardiology. Financial support was provided by the Joseph Drown Foundation.

UC San Francisco (UCSF) is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It also includes UCSF Health, which comprises three top-ranked hospitals, UCSF Medical Center and UCSF Benioff Children's Hospitals in San Francisco and Oakland, and other partner and affiliated hospitals and healthcare providers throughout the Bay Area. For more information, visit www.ucsf.edu/news.
Symptom reporting drove the inconsistencies between surveys and medical records, the study found.

The top discordant issue: glare. Of patients reporting concern about glare on their surveys, 91% didn’t have it on their medical record.

Eye redness was second-most common; (80% had no medical record mention, followed by eye pain (74.4%). Blurry vision was only the symptom to tilt the scales -- with more instances of inclusion in medical records than in questionnaires.

As a result, other doctors treating the same patient in future visits could have an incomplete picture of their symptoms.

Perhaps more risky: because digital medical records are increasingly used to guide clinical practice or research, the collective data may be shortsighted or misleading in some scenarios, Woodward says. "Many parties in health care use the electronic health records now and they expect the data to accurately reflect the interaction with the doctor," says Woodward, also a member of the Institute for Healthcare Policy and Innovation.

Explanations for the medical record-doctor-patient disconnect are understandable, she adds, with neither party at fault. The doctor-patient relationship is more nuanced than what is reflected in the medical record. A patient might not choose to mention all of their symptoms. Doctor dialogue may follow a conversational path versus a point-by-point checklist.

Time constraints of record keeping in the electronic chart can also be an issue. And not every detail of a given appointment -- particularly minor concerns -- is necessarily worth documenting.

Still, notes Woodward, "The concern highlighted by this research is that important symptoms may be overlooked. If a patient has severe symptoms, all of those symptoms should be documented and addressed."

Gaining greater clarity

The study highlights an opportunity to improve lines of communication between patients and doctors.

For example, implementing pre-appointment eye symptom questionnaires, similar to those in the study, could be simple and effective, Woodward says. A similar pilot program, she notes, is underway in her clinic. "This is definitely a pathway I see as very feasible to resolving this disconnect in the near future; the infrastructure is already there," she says.

The concept also could help bring more clarity to what ends up on a patient’s medical record. Because the surveys Woodward and her team used asked participants to assess their conditions’ severity on a numeric scale, results could help practitioners better evaluate the depth of a patient’s symptoms -- and even identify concerns that might have gone unnoticed.

The use of a self-report system before seeing the doctor could "really change the conversation between the doctor and the patient," says Woodward. Rather than spending time to identify symptoms, doctors and patient could be talking about how to manage severe symptoms.

How Medical Simulation Save Lives

Newswise — Medical simulation, the use of manikins, virtual reality, live action scenarios designed to train first responders, physicians, anesthesiologists, nurses and other medical professionals, provides life-saving techniques.

Through a series of education sessions, keynote addresses and an exhibit floor with many of the newest technologies, simulation was on full display at IMSH, the International Meeting for Simulation in Healthcare in January at the Hyatt Regency Orlanda.

The International Meeting on Simulation in Healthcare (IMSH) is the world’s largest conference dedicated to healthcare simulation learning, research and scholarship, offering 250 sessions in various formats, from large plenary sessions to small, interactive immersive courses. It is also considered to be the educational and networking event for the simulation world; in fact, 92% of last year’s attendees rated networking opportunities the most valuable or strongest value of attending.

The Society for Simulation in Healthcare (SSH) seeks to improve performance and reduce errors in patient care through the use of
Soft Robots Hug the Heart to Help Pump Blood

An implantable soft-robotic device could help failing hearts pump blood by giving the organ gentle squeezes, mimicking the natural motion of cardiac muscle, a new study reveals. The silicon-based device, which stiffens or relaxes when inflated with pressurized air, could prove to be a promising strategy for the development of assistive devices for heart failure—a serious condition afflicting 41 million people worldwide and over five million in the U.S., costing the nation an estimated $32 billion each year. While ventricular assist devices (VADs) are currently used as a life-prolonging therapy, they are in constant contact with the blood—a increasing a patient's risk for infection, coagulation and stroke, and requiring the use of long-term blood-thinning medications.

VADs also interfere with the normal curvature of the heart and its contraction mechanics. Seeking to pioneer a more effective device, Ellen Roche and colleagues developed a novel apparatus designed to augment cardiac function by closely replicating normal heart muscle behavior, instead of disrupting it. In ex vivo experiments, the device successfully conformed to porcine heart surfaces, synchronizing with native heart motion. It also restored normal blood flow after acute cardiac arrest in six living pigs. The researchers were able to “fine tune” the device by selectively twisting and compressing either the right or left ventricle of explanted pig hearts—a key finding, as chronic heart-failure often only affects a portion of the organ. With further investigation, the device could be tailored for individual patient needs, to better target cardiac rehabilitation or recovery. Additional work is needed to make this technology suitable for longer-term implantation in the body, the authors say.

Article #3: "Soft robotic sleeve supports heart function," by E.T. Roche; M.A. Horvath; A. Alazmani; S.-E. Song; W. Whyte; C.J. Payne; D.J. Mooney; C.J. Walsh at Harvard University in Cambridge, MA; E.T. Roche; M.A. Horvath; A. Alazmani; S.-E. Song; W. Whyte; C.J. Payne; J. Weaver; D.J. Mooney; C.J. Walsh at Wyss Institute for Biologically Inspired Engineering in Boston, MA; E.T. Roche at National University of Ireland Galway in Galway, Ireland; MA Horvath at Technische Universität München in Garching, Germany; I. Wamala; A. Alazmani; S.-E. Song; Z. Machaidze; J. Kuebler; N.V. Vasilyev; F.A. Pigula at Boston Children’s Hospital in Boston, MA; A. Alazmani at University of Leeds in Leeds, UK; S.-E. Song at University of Central Florida in Orlando, FL; W. Whyte at Royal College of Surgeons in Ireland in Dublin, Ireland; W. Whyte at Trinity College Dublin in Dublin, Ireland. For a complete list of authors, please see the manuscript.

To view the papers abstract, go to: http://stm.sciencemag.org/lookup/doi/10.1126/scitranslmed.aaf3925

The full paper is available for free at stm.sciencemag.org.

E-mail comments or questions on medical news to:
Mar-17-News@CCT.bz
INDICATIONS FOR USE:
The Covered CP Stent™ is indicated for use in the treatment of native and/or recurrent coarctation of the aorta involving the aortic isthmus or first segment of the descending aorta where there is adequate size and patency of at least one femoral artery associated with one or more of the following: Acute or chronic wall injury; Nearly atretic descending aorta of 3 mm or less in diameter; A non-compliant stenotic aortic segment found on pre-stent balloon dilation; A genetic or congenital syndrome associated with aortic wall weakening or ascending aortic aneurysm.

WARNINGS / PRECAUTIONS:
Coarctation of the aorta involving the aortic isthmus or first segment of the descending aorta should be confirmed by diagnostic imaging. The CP stent has not been evaluated in patients weighing less than 20kg. As with any type of implant, infection secondary to contamination of the stent may lead to aortitis, or abscess. Overstretching of the artery may result in rupture or aneurysm formation. Crimping the stent on a balloon catheter smaller than 12mm may cause damage to the stent. Excessive handling and manipulation of the covering while crimping the stent may cause the covering to tear off of the stent. This device is intended for single use only. Do not resterilize and/or reuse it, as this can potentially result in compromised device performance and increased risk of cross-contamination.

CONTRAINDICATIONS:
Patients too small to allow safe delivery of the stent without compromise to the systemic artery used for delivery. Unfavorable aortic anatomy that does not dilate with high pressure balloon angioplasty. Curved vasculature. Occlusion or obstruction of systemic artery precluding delivery of the stent. Clinical or biological signs of infection. Active endocarditis. Known allergy to aspirin, other antiplatelet agents, or heparin. Pregnancy.

Refer to the Instructions for Use for complete indications, relevant warnings, precautions, complications, and contraindications.

CP Stent is a trademark of NuMED, Inc.

Rx only CV9048 11/16 ©2016 B. Braun Interventional Systems Inc.

Distributed by:
B. Braun Interventional Systems Inc.
824 Twelfth Avenue | Bethlehem, PA 18018 USA
Tel 877 836 2228 | Fax 610 849 1334 | www.bisusa.org